您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2015, Vol. 53 ›› Issue (5): 60-65.doi: 10.6040/j.issn.1671-7554.0.2015.039

• 临床医学 • 上一篇    下一篇

microRNA-133对终末期扩张型心肌病心肌纤维化调控的作用

王勇1, 厉泉2, 陈善良2, 王东2, 于建民2, 李敏2, 刘天起2   

  1. 1. 潍坊医学院, 山东 潍坊 261053;
    2. 山东大学附属千佛山医院心外科, 山东省心脏移植与材料工程技术研究中心, 山东 济南 250014
  • 收稿日期:2015-01-12 修回日期:2015-03-20 出版日期:2015-05-10 发布日期:2015-05-10
  • 通讯作者: 刘天起。E-mail:tianqiliu12@aliyun.com;李敏。E-mail:liminzijia1210@126.com E-mail:tianqiliu12@aliyun.com;liminzijia1210@126.com
  • 基金资助:
    山东省自然科学基金(Z2006C10)

Effects of microRNA-133 on end-stage myocardial fibrosis of dilated cardiomyopathy

WANG Yong1, LI Quan2, CHEN Shanliang2, WANG Dong2, YU Jianmin2, LI Min2, LIU Tianqi2   

  1. 1. Weifang Medical College, Weifang 261053, Shandong, China;
    2. Department of Cardiac Surgery, Qianfoshan Hospital Affiliated to Shandong University, Shandong Heart Transplantation and Materials Engineering Technology Research Center, Jinan 250014, Shandong, China
  • Received:2015-01-12 Revised:2015-03-20 Online:2015-05-10 Published:2015-05-10

摘要: 目的 探讨microRNA-133(miR-133)在扩张型心肌病(DCM)心肌纤维化过程中的作用。方法 收集行心脏移植的DCM患者心肌组织标本21例(DCM组),意外创伤性脑死亡而无心脏疾病患者心肌组织标本10例(对照组)。Masson染色观察心肌纤维化状况,原位末端标记法(TUNEL法)观察心肌细胞凋亡情况。培养人心肌成纤维细胞,转染miR-133模拟物(miR-133a mimic、 miR-133b mimic),上调心肌成纤维细胞miR-133(miR-133a、miR-133b)的表达,应用RT-PCR 法检测miR-133a、miR-133b的表达,应用RT-PCR、Western boltting法分别检测BCL-2 mRNA和蛋白水平表达。结果 DCM组心肌组织中出现严重的心肌纤维化和心肌细胞凋亡,左、右心室心肌间质和血管周围胶原(CVF)增多(P<0.01 );凋亡指数增高(P<0.05);细胞凋亡相关蛋白BCL-2表达上调(P<0.05);人心肌成纤维细胞转染miR-133a mimic、miR-133b mimic后,miR-133a、miR-133b表达上调(P<0.01),BCL-2表达显著下降(P<0.01)。结论 DCM 心肌组织中 miR-133能够减弱BCL-2对心肌成纤维细胞的诱导,抑制心肌成纤维细胞病理增生,减轻DCM心肌纤维化。

关键词: 心肌纤维化, 扩张型心肌病, microRNA-133, BCL-2

Abstract: Objective To investigate the effects of microRNA-133(miR-133) on myocardial fibrosis of dilated cardiomyopathy (DCM). Methods A total of 21 myocardial samples of DCM patients undergoing cardiac transplantation (DCM group) and 10 myocardial samples of brain-dead victims of accidental trauma who had no medical evidence of cardiac disease (control group) were collected. The degrees of myocardial fibrosis were observed with masson staining, and cardiomyocyte apoptosis was determined with TdT-mediated dUTP Nick-End Labeling (TUNEL). Human cardiac fibroblasts were cultured, and miR-133mimic(miR-133a mimic and miR-133b mimic) was transfected into the fibroblasts to investigate the effects of miR-133(miR-133a and miR-133b) on myocardial fibrosis. The mRNA expressions of BCL-2 and miR-133 were detected with RT-PCR, and the protein expression of BCL-2 was evaluated with Western blotting. Results In DCM group, severe myocardial fibrosis and myocardial cell apoptosis were observed, collagen volume fraction (CVF) was increased (left ventricle P<0.01; right ventricle P<0.01), myocardial apoptosis index was higher (left ventricle P<0.05; right ventricle P<0.05), and apoptosis-related protein BCL-2 was increased (P<0.05; right ventricle P<0.05). After miR-133a mimic and miR-133b mimic were transfected into human cardiac fibroblasts, the expression of miR-133a and miR-133b were elevated (P<0.01) and BCL-2 was decreased (P<0.01). Conclusion In myocardial tissues of DCM patients, miR-133 can attenuate the stimulation on cardiac fibroblasts induced by BCL-2, inhibit pathologic proliferation of myocardial fibroblasts, and reduce myocardial fibrosis of DCM.

Key words: microRNA-133, Dilated cardiomyopathy, BCL-2, Myocardial fibrosis

中图分类号: 

  • R542.2
[1] Jefferies JL, Towbin JA. Dilated cardiomyopathy[J]. Lancet, 2010, 375(9716):752-762.
[2] Manabe I, Shindo T, Naqai R. Gene expression in fibroblasts and fibrosis:involvement in cardiac hypertrophy[J]. Circ Res, 2002, 91(12):1103-1113.
[3] Chen JF, Murchison EP, Tang R, et al. Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure[J]. Proc Natl Acad Sci U S A, 2008, 105(6):2111-2116.
[4] Wang B, Komers R, Carew R, et al. Suppression of microRNA-29 expression by TGF-beta1 promotes collagen expression and renal fibrosis[J] . J Am Soc Nephrol, 2012, 23(2):252-265.
[5] Wan Rooij E, Sutherland LB, Thatcher JE, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis[J]. Proc Natl Acad Sci U S A, 2008, 105(35):13027-13032.
[6] Zhu H, Fan GC. Role of microRNAs in the reperfused myocardium towards post-infarct remodelling[J]. Cardiovasc Res, 2012, 94(2):284-292.
[7] Mewton N, Liu CY, Croisille P, et al. Assessment of myocardial fibrosis with cardiovascular magnetic resonance[J]. J Am Coll Cardiol, 2011, 57(8):891-903.
[8] Heusch G, Libby P, Gersh B, et al. Cardiovascular remodelling in coronary artery disease and heart failure[J]. The Lancet, 2014, 383(9932):1933-1943.
[9] Schnee JM, Hsueh WA. Angiotensi II, adhesion and cardiac fibrosis[J]. Cardiovasc Res, 2000, 46(2):264-268.
[10] Hong BK, Kwon HM, Byun KH, et al. Apoptosis in dilated cardiomyopathy[J]. Korean J Intern Med, 2000, 15(1):56-64.
[11] Frangogiannis NG, Smith CW, Entman ML. The inflammatory response in myocardial infarction[J]. Cardiovasc Res, 2002, 53(1):31-47.
[12] Agocha A, Lee HW, Eghbali-Webb M. Hypoxia regulates basal and induced DNA synthesis and collagen type I production in human cardiac fibroblasts:effects of transforming growth factor-beta1, thyroid hormone, angiotensin II and basic fibroblast growth factor[J]. J Mol Cell Cardiol, 1997, 29(8):2233-2244.
[13] Latif N, Khan MA,Birks E,et al. Upregulation of the Bcl-2 family of proteins in end stage heart failure[J]. J Am Coll Cardiol, 2000, 35(7):1769-1777.
[14] Mayorga M, Bahi N, Ballester M, et al. Bcl-2 is a key factor for cardiac fibroblast resistance to programmed cell death[J]. J Biol Chem, 2004, 279(33):34882-34889.
[15] Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2):281-297.
[16] Carè A, Caralucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertrophy[J]. Nat Med, 2007, 13(5):613-618.
[17] Liu N, Bezprozvannaya S, Williams AH, et al. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart[J]. Genes Dev, 2008, 22(23):3242-3254.
[18] Matkovich SJ, Wang W, Tu Y, et al. microRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts[J]. Circ Res, 2010, 106(1):166-175.
[19] Duisters RF, Tijsen AJ, Schroen B, et al. miR-133 and miR-30 regulate connective tissue growth factor:implications for a role of microRNAs in myocardial matrix remodeling[J]. Circ Res, 2009, 104(2):170-178.
[1] 严芳英,单晓兰,李静媛,张杰,闫雪芳,杨奕,卜培莉. 吡格列酮通过调控Sirt3改善高血压引起的心肌纤维化机制[J]. 山东大学学报(医学版), 2017, 55(5): 13-18.
[2] 席福立,张梅. MicroRNA-34a在心肌纤维化过程中对SH2B3的表达调控[J]. 山东大学学报(医学版), 2016, 54(2): 6-10.
[3] 周长学. 多巴酚丁胺联合参附注射液治疗扩张型心肌病重度心力衰竭(附典型病例1例)[J]. 山东大学学报(医学版), 2014, 52(S1): 132-133.
[4] 文敏1,赵晶2,鲍星星3,邓成敏4,童雪涛3. 孤独症大鼠前额叶皮质神经元凋亡相关蛋白的表达[J]. 山东大学学报(医学版), 2014, 52(2): 48-51.
[5] 阚丽丽1,蒋方国1,安丰双2. 心肌纤维化模型大鼠心肌组织中GRK2的表达以及对胶原合成的影响[J]. 山东大学学报(医学版), 2013, 51(9): 22-25.
[6] 张远浩,宋光民,赵文杰,白宵,张敬国,赵鑫. 趋化因子RANTES和受体CCR5在心脏移植慢性排斥反应中的表达[J]. 山东大学学报(医学版), 2012, 50(6): 38-.
[7] 赵永辉1,高军2,李卓1,姜勇2. 酮对蛛网膜下腔出血后早期脑损伤的保护作用[J]. 山东大学学报(医学版), 2012, 50(5): 55-.
[8] 孙尧,刘冬梅,程燕,吕永姮. 二甲双胍对糖尿病大鼠心肌纤维化的影响[J]. 山东大学学报(医学版), 2011, 49(7): 83-85.
[9] 齐晓丽1,田克立1,张典瑞2,徐霞1,冯飞飞2,任桂杰1,苑辉卿1,褚倩倩1,张强3. 冬凌草甲素诱导胰腺癌PANC-1细胞凋亡及对G2/M细胞周期的阻滞作用[J]. 山东大学学报(医学版), 2011, 49(2): 9-13.
[10] 王德金1,任满意2,陈慧娜1,王旭平3,隋树建1. TWEAK通过NF-κB途径促进大鼠成纤维细胞表达基质金属蛋白酶9[J]. 山东大学学报(医学版), 2011, 49(11): 13-17.
[11] 唐茜茜1,袁倩2,崔元孝1,张清华1,郭章玉1. 热休克蛋白70对脑出血大鼠神经细胞Bcl-2、Bax蛋白表达的影响[J]. 山东大学学报(医学版), 2011, 49(11): 40-.
[12] 王晗1,李书鹏2,姜玉华1,刘芳2 . 谷胱甘肽对多巴胺诱导的GH4细胞凋亡的保护作用[J]. 山东大学学报(医学版), 2011, 49(11): 48-.
[13] 林涛1,李刚1 ,刘青林1,王敏卿1,王俊涛1,冯进波2. 冬凌草甲素诱导人脑胶质瘤U251细胞的凋亡及其机制[J]. 山东大学学报(医学版), 2010, 48(8): 8-12.
[14] 曲江波1,夏伟1,葛舒平1,谢明星2,郑敏娟3,孙若鹏1. 高频生物显微镜结合组织多普勒评价扩张型心肌病小鼠心功能的可行性[J]. 山东大学学报(医学版), 2010, 48(7): 52-55.
[15] 杨晓冉1,李运1,巩磊1,肖瑛2,郭海燕1. bFGF在持续高眼压下对兔视网膜神经节细胞的保护作用[J]. 山东大学学报(医学版), 2010, 48(4): 74-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!