您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (7): 92-101.doi: 10.6040/j.issn.1671-7554.0.2024.1389

• 公共卫生与预防医学 • 上一篇    下一篇

基于三种统计模型的长期空气污染物混合暴露与耐药性结核病发病风险关联

王莹1,李怀臣2,龙飞3,刘铱1   

  1. 1.山东大学齐鲁医学院公共卫生学院生物统计学系, 山东 济南 250012;2.山东第一医科大学附属山东省立医院呼吸与危重症医学科, 山东 济南 250021;3.山东第一医科大学第三附属医院呼吸与危重症医学科, 山东 济南 250031
  • 发布日期:2025-07-08
  • 通讯作者: 刘铱. E-mail:liuyi238@sdu.edu.cn龙飞. E-mail:earlf792002@163.com
  • 基金资助:
    国家自然科学基金(82103948)

Association between long-term mixed air pollution exposure and the risk of drug-resistant tuberculosis based on three statistical models

WANG Ying1, LI Huaichen2, LONG Fei3, LIU Yi1   

  1. 1. Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China;
    2. Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China;
    3. Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Shandong First Medical University, Jinan 250031, Shandong, China
  • Published:2025-07-08

摘要: 目的 探讨五种常见空气污染物(PM10、PM2.5、SO2、NO2、O3)的长期混合暴露对耐药性结核病(drug-resistant tuberculosis, DR-TB)发病风险的影响,为DR-TB的防治提供科学依据。 方法 收集2015—2019年山东省首次被诊断为DR-TB的3 369例患者的实验室检测结果、临床指标和社会人口学信息。监测患者在4个暴露窗口期(确诊前90、180、270、360 d)内的空气污染物暴露情况。采用Logistic回归(Logistic regression, LR)模型评估单一污染物的影响;采用加权分位数和(weighted quantile sum, WQS)模型与贝叶斯核机器回归(Bayesian kernel machine regression, BKMR)模型检验污染物的联合效应;采用BKMR模型研究污染物与DR-TB发病风险之间的浓度-反应(concentration-response, C-R)关系以及污染物间的交互作用。 结果 LR模型结果显示,在90 d暴露窗口期内,O3浓度的增加与异烟肼耐药性结核病(isoniazid-resistant tuberculosis, IR-TB)的发病风险上升相关(OR=1.008, P=0.02)。WQS和BKMR模型结果显示,空气污染物的混合暴露可降低IR-TB与多耐药性结核病(multi-drug resistant tuberculosis, MDR-TB)的发病风险(β2=0.75, P=0.01)。BKMR模型结果显示,NO2在90 d和360 d暴露窗口期内降低了IR-TB(90 d: β=-0.12,95%CI:-0.22~-0.02;360 d: β=-0.10,95%CI:-0.19~-0.01)和MDR-TB(90 d: β=-0.10,95%CI:-0.19~-0.01;360 d: β=-0.13,95%CI:-0.22~-0.04)的发病风险,关联具有统计学意义(P<0.05);NO2与DR-TB发病风险之间存在非线性关系以及与其他污染物在混合暴露条件下存在交互作用。 结论 高浓度O3暴露可以增加IR-TB的发病风险,长期混合空气污染物暴露与DR-TB发病风险无关联。

关键词: 贝叶斯核机器回归, 耐药性结核病, 空气污染物混合暴露, 健康风险评估

Abstract: Objective To study the effects of long-term mixed exposure to five common air pollutants(PM10, PM2.5, SO2, NO2, and O3)on the incidence of drug-resistant tuberculosis(DR-TB), and to provide a basis for the prevention and treatment of DR-TB. Methods Laboratory test results, clinical indicators and sociodemographic information of 3,369 patients who were first diagnosed DR-TB patients in Shandong Province from 2015 to 2019 were collected. Patients were monitored for exposure to air pollutants during four exposure windows(90, 180, 270 and 360 days before diagnosis). The Logistic regression(LR)model was used to evaluate the impact of a single pollutant. Weighted quantile sum(WQS)and Bayesian kernel machine regression(BKMR)models were applied to examine the joint effects of pollutants, with the BKMR model was used to study the concentration-response(C-R)relationship between pollutants and the risk of DR-TB, as well as the interactions between pollutants. Results The results of LR model showed that the increase of O3 concentration was associated with the increased risk of IR-TB during the 90 days exposure window(OR=1.008,P=0.02). The results of WQS and BKMR models showed that the mixed exposure to air pollutants reduced the risk of IR-TB and MDR-TB(β2=0.75, P=0.01). The results of the BKMR model showed that NO2 reduced the risk of IR-TB(90 days: β=-0.12, 95%CI: -0.22~-0.02; 360 days: β=-0.10, 95%CI: -0.19~-0.01)and MDR-TB(90 days: β=-0.10, 95%CI: -0.19~-0.01; 360 days: β=-0.13, 95%CI: -0.22~-0.04), and the association was statistically significant(P<0.05). In addition, the model also showed a non-linear relationship between NO2 and the risk of DR-TB, as well as interactions with other pollutants under mixed exposure conditions. Conclusion High levels of O3 exposure can increase the risk of IR-TB; long-term exposure to mixed air pollutants was not associated with the risk of DR-TB. Long-term exposure to mixed air pollutants is not associated with the risk of DR-TB.

Key words: Bayesian kernel machine regression, Drug-resistant tuberculosis, Mixed exposure to air pollutants, Health risk assessment

中图分类号: 

  • R122.7
[1] World Health Organization. Global tuberculosis report 2023[M]. Geneva: World Health Organization, 2024.
[2] Jain M, Vyas R. Unveiling the silent defenders: mycobacterial stress sensors at the forefront to combat tuberculosis[J]. Crit Rev Biotechnol, 2025: 1-19. doi: 10.1080/07388551.2024.2449367
[3] Belin P, Le Du MH, Fielding A, et al. Identification and structural basis of the reaction catalyzed by CYP121, an essential cytochrome P450 in Mycobacterium tuberculosis[J]. Proc Natl Acad Sci USA, 2009, 106(18): 7426-7431.
[4] Carrico C, Gennings C, Wheeler DC, et al. Characterization of weighted quantile sum regression for highly correlated data in a risk analysis setting[J]. J Agric Biol Environ Stat, 2015, 20(1): 100-120.
[5] Bobb JF, Valeri L, Claus Henn B, et al. Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures[J]. Biostatistics, 2015, 16(3): 493-508.
[6] 朱林剑, 许勇飞, 陈渟桑, 等. 肺结核合并肺癌患者的危险因素及耐药情况分析[J]. 莆田学院学报, 2024, 31(5): 39-42. ZHU Linjian, XU Yongfei, CHEN Tingsang, et al. Analysis of risk factors and drug resistance in patients with pulmonary tuberculosis and lung cancer[J]. Journal of Putian University, 2024, 31(5): 39-42.
[7] Dorjee K, Dierberg KL, Sadutshang TD, et al. First report of multi-drug resistant tuberculosis in a systemic lupus erythematosus patient[J]. BMC Res Notes, 2015, 8: 337. doi: 10.1186/s13104-015-1302-x
[8] 周欢, 余黄鹏. 人类免疫缺陷病毒合并结核分枝杆菌感染患者的病原菌分布特征及药敏性[J]. 中国当代医药, 2024, 31(13): 88-91. ZHOU Huan, YU Huangpeng. Distribution characteristics and drug sensitivity of pathogenic bacteria in patients with human immunodeficiency virus combined with Mycobacterium tuberculosis infection[J]. China Modern Medicine, 2024, 31(13): 88-91.
[9] 谢其冰, 文富强, 尹耕. 异烟肼对长期接受甲氨喋呤治疗的类风湿关节炎患者结核感染的预防作用[J]. 四川大学学报(医学版), 2009, 40(1): 138-140. XIE Qibing, WEN Fuqiang, YIN Geng. Isoniazid prophylaxis for pulmonary tuberculosis in Chinese patients with rheumatoid arthritis receiving long term methotrexate therapy[J]. Journal of Sichuan University(Medical Science Edition), 2009, 40(1): 138-140.
[10] 国家质量监督检验检疫总局, 中华人民共和国国家标准化管理委员会. 环境空气质量标准: GB 3095—2012[S]. 北京: 中国环境科学出版社, 2016.
[11] Zhou Y, Cheng SY, Chen DS, et al. Temporal and spatial characteristics of ambient air quality in Beijing, China[J]. Aerosol Air Qual Res, 2015, 15(5): 1868-1880.
[12] 李瑞江. 针板先验的研究与应用[D]. 上海: 复旦大学, 2013.
[13] Bobb JF, Claus Henn B, Valeri L, et al. Statistical software for analyzing the health effects of multiple concurrent exposures via Bayesian kernel machine regression[J]. Environ Health, 2018, 17(1): 67. doi: 10.1186/s12940-018-0413-y
[14] Amemiya T. Qualitative response models: a survey[J]. J Econ Lit, 1981, 19(4): 1483-1536.
[15] Li HM, Deng WY, Small R, et al. Health effects of air pollutant mixtures on overall mortality among the elderly population using Bayesian kernel machine regression(BKMR)[J]. Chemosphere, 2022, 286(1): 131566. doi: 10.1016/j.chemosphere.2021.131566
[16] Wang Q, Li YL, Yin YL, et al. Association of air pollutants and meteorological factors with tuberculosis: a national multicenter ecological study in China[J]. Int J Biometeorol, 2023, 67(10): 1629-1641.
[17] Song JS, Nie YX, Wang BH, et al. A systematic review and meta-analysis of the association between air pollutants and the incidence of tuberculosis[J]. Heliyon, 2024, 10(8): e28801. doi: 10.1016/j.heliyon.2024.e28801
[18] Feng HY, Ge EJ, Grubic N, et al. Coarse particulate air pollution and mortality in a multidrug-resistant tuberculosis cohort[J]. Sci Total Environ, 2024, 946: 174048. doi: 10.1016/j.scitotenv.2024.174048
[19] Zhao CN, Xu ZW, Wang P, et al. Associations between air pollutants and acute exacerbation of drug-resistant tuberculosis: evidence from a prospective cohort study[J]. BMC Infect Dis, 2024, 24(1): 121. doi: 10.1186/s12879-024-09011-x
[20] Song WM, Li YF, Ma XB, et al. Primary drug resistance of Mycobacterium tuberculosis in Shandong, China, 2004-2018[J]. Respir Res, 2019, 20(1): 223. doi: 10.1186/s12931-019-1199-3
[21] Liu Y, Cui LL, Liu JY, et al. Ambient air pollution exposures and risk of drug-resistant tuberculosis[J]. Environ Int, 2019, 124: 161-169. doi: 10.1016/j.envint.2019.01.013
[22] Chen SS, Wang XQ, Li DH, et al. Association between exposure to ozone(O3)and the short-term effect on tuberculosis outpatient visits: a time-series study in 16 cities of Anhui Province, China[J]. J Multidiscip Healthc, 2023, 16: 2045-2055. doi: 10.2147/JMDH.S412394
[23] Li A, Zhou Q, Xu Q. Prospects for ozone pollution control in China: an epidemiological perspective[J]. Environ Pollut, 2021, 285: 117670. doi: 10.1016/j.envpol.2021.117670
[24] Deng XY, Xing DG, Chen ZY, et al. The short-term effect of air pollution on the incidence of pulmonary tuberculosis in Chongqing, China, 2014-2020[J]. J Infect Dev Ctries, 2023, 17(12): 1722-1731.
[25] Yamazaki S, Shima M, Ando M, et al. Modifying effect of age on the association between ambient ozone and nighttime primary care visits due to asthma attack[J]. J Epidemiol, 2009, 19(3): 143-151.
[26] Yang JD, Zhang MX, Chen YG, et al. A study on the relationship between air pollution and pulmonary tuberculosis based on the general additive model in Wulumuqi, China[J]. Int J Infect Dis, 2020, 96: 42-47. doi: 10.1016/j.ijid.2020.03.032
[27] Raposo-Garcia S, Costas C, Carmen Louzao M, et al. Synergistic effect of environmental food pollutants: Pesticides and marine biotoxins[J]. Sci Total Environ, 2023, 858(3): 160111. doi: 10.1016/j.scitotenv.2022.160111
[1] 王苏玮,刘毅刚,安玉琴,袁树华,郝海燕,丁婷婷. 2018-2022年某县镉和铅多暴露途径的健康风险评估[J]. 山东大学学报 (医学版), 2024, 62(7): 106-113.
[2] 单冰,崔亮亮,张迎建,曹萌,秦大中,王丽珩,彭秀苗. 济南市宾馆、理发店和美容院室内空气中常见化学污染物的健康风险评估[J]. 山东大学学报 (医学版), 2021, 59(12): 110-119.
[3] 孙成瑶,唐大镜,陈凤格,赵川,关茗洋. 2016~2020年石家庄市大气PM2.5化学成分变化趋势及健康风险评估[J]. 山东大学学报 (医学版), 2021, 59(12): 78-86.
[4] 彭秀苗,王雪峰,公为美,张扬,周敬文,崔亮亮. 2016~2020年济南市居民饮用水中8种重金属浓度变化趋势及健康风险特征分析[J]. 山东大学学报 (医学版), 2021, 59(12): 24-32.
[5] 杨似玉,闫晓娜,彭靖,张杰,王永星,张欣烨,张书芳. 郑州市两城区大气PM2.5中金属、类金属污染特征及健康风险评估[J]. 山东大学学报 (医学版), 2021, 59(12): 70-77.
[6] 曹萌,王丽珩,彭秀苗,崔亮亮. 2016~2020年济南市两城区大气PM2.5中多环芳烃浓度特征及慢性健康风险评估[J]. 山东大学学报 (医学版), 2021, 59(12): 87-95.
[7] 潘璐,王炳玲,王寅,张秀芹,徐春生,李丹丹,段海平. 2014~2019年青岛市生活饮用水健康风险评估[J]. 山东大学学报 (医学版), 2021, 59(12): 42-49.
[8] 杜艳君,班婕,孙庆华,张翼,王情,陈晨,刘园园,李湉湉. 《化学物质环境健康风险评估技术指南》解读[J]. 山东大学学报 (医学版), 2021, 59(12): 20-23.
[9] 王停停,王金涛,袁中尚,苏萍,薛付忠. 原因别竞争风险模型及其在健康风险评估中的应用[J]. 山东大学学报(医学版), 2017, 55(6): 42-46.
[10] 王金涛,苏萍,袁中尚,薛付忠. 部分分布竞争风险模型及其在健康风险评估中的应用[J]. 山东大学学报(医学版), 2017, 55(6): 37-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!