山东大学学报 (医学版) ›› 2024, Vol. 62 ›› Issue (10): 76-86.doi: 10.6040/j.issn.1671-7554.0.2024.0169
• 基础医学 • 上一篇
闫小龙1,秦英2,邵将3,陈东峰3,管东辉3,赵灿斌4
YAN Xiaolong1, QIN Ying2, SHAO Jiang3, CHEN Dongfeng3, GUAN Donghui3, ZHAO Canbin4
摘要: 目的 探讨姜黄素对骨髓间充质干细胞(bone marrow-derived mesenchymal stem cells, BMSCs)成骨分化的潜在调控机制。 方法 通过网络药理学方法获取姜黄素调控成骨分化的靶点基因,构建蛋白质作用网络(protein-protein interactions, PPI),并进行基因本体(Gene Ontology, GO)、京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes, KEGG)通路富集分析及分子对接处理。采用CCK-8法及细胞克隆筛选姜黄素药物浓度,进一步采用 ALP染色及活性测定、 AR染色及定量分析检测姜黄素对成骨分化的宏观调控作用。采用RT-qPCR法及Western blotting法检测Wnt/β-catenin信号通路相关mRNA及蛋白的微观表达差异。 结果 筛选出姜黄素调控成骨分化的靶点基因92个,主要涉及细胞内部对化学刺激、含氧化合物的反应等生物过程。其中,有3个靶点基因作用于Wnt/β-catenin信号通路,且均可以与姜黄素良好对接。此外,低浓度姜黄素(5 、10 μmol)对大鼠骨髓间充质干细胞(rat bone marrow-derived mesenchymal stem cells, rBMSCs)增殖无明显毒性且可增强碱性磷酸酶活性、增加钙盐沉积量(P<0.05),上调成骨相关基因及蛋白的表达(P<0.05),从而促进rBMSCs成骨分化。而高浓度姜黄素(15 μmol)对rBMSCs成骨分化过程有潜在的抑制作用。 结论 姜黄素可以通过调控Wnt/β-catenin信号通路影响成骨相关基因的表达,进而调控BMSCs成骨分化过程。
中图分类号:
[1] Fuggle NR, Curtis B, Clynes M, et al. The treatment gap: the missed opportunities for osteoporosis therapy[J]. Bone, 2021, 144: 115833. doi: 10.1016/j.bone.2020.115833. [2] Hu M, Xing L, Zhang L, et al. NAP1L2 drives mesenchymal stem cell senescence and suppresses osteogenic differentiation[J]. Aging Cell, 2022, 21(2): e13551. [3] Yang W, Li HY, Wu YF, et al. ac4C acetylation of RUNX2 catalyzed by NAT10 spurs osteogenesis of BMSCs and prevents ovariectomy-induced bone loss[J]. Mol Ther Nucleic Acids, 2021, 26: 135-147. doi: 10.1016/j.omtn.2021.06.022. [4] Liu F, Yuan Y, Bai L, et al. LRRc17 controls BMSC senescence via mitophagy and inhibits the therapeutic effect of BMSCs on ovariectomy-induced bone loss[J]. Redox Biol, 2021, 43: 101963. doi: 10.1016/j.redox.2021.101963. [5] Lu J, Hu D, Ma C, et al. Advances in our understanding of the mechanism of action of drugs(including traditional Chinese medicines)for the intervention and treatment of osteoporosis[J]. Front Pharmacol, 2022, 13: 938447. doi: 10.3389/fphar.2022.938447. [6] Freires IA, Santaella GM, de Cássia Orlandi Sardi J, et al. The alveolar bone protective effects of natural products: a systematic review[J]. Arch Oral Biol, 2018, 87: 196-203. doi: 10.1016/j.archoralbio.2017.12.019. [7] 吴彧,夏彦清,伍玥,等.炎性细胞模型中姜黄素对胆固醇逆转运蛋白ABCA1和ABCG1基因的影响[J].山东大学学报(医学版), 2016, 54(11): 24-26. WU Yu, XIA Yanqing, WU Yue, et al. The effect of curcumin on the expression of ABCA1 and ABCG1 genes in an inflammatory cell model of reverse cholesterol transport [J]. Journal of Shandong University(Medical Edition), 2016, 54(11): 24-26. [8] 丁菲,姜洁.姜黄素对子宫内膜癌孕激素抵抗的影响[J].山东大学学报(医学版), 2021, 59(4): 35-41. DING Fei, JIANG Jie. The impact of curcumin on hormone resistance in endometrial cancer[J]. Journal of Shandong University(Medical Edition), 2021, 59(4): 35-41. [9] Sahebkar A, Cicero AFG, Simental-Mendía LE, et al. Curcumin downregulates human tumor necrosis factor-α levels: a systematic review and meta-analysis ofrandomized controlled trials[J]. Pharmacol Res, 2016, 107: 234-242. doi: 10.1016/j.phrs.2016.03.026. [10] Son HE, Kim EJ, Jang WG. Curcumin induces osteoblast differentiation through mild-endoplasmic reticulum stress-mediated such as BMP2 on osteoblast cells[J]. Life Sci, 2018, 193: 34-39. doi: 10.1016/j.lfs.2017.12.008. [11] Chen Z, Xue J, Shen T, et al. Curcumin alleviates glucocorticoid-induced osteoporosis through the regulation of the Wnt signaling pathway[J]. Int J Mol Med, 2016, 37(2): 329-338. [12] Riva A, Togni S, Giacomelli L, et al. Effects of a curcumin-based supplementation in asymptomatic subjects with low bone density: a preliminary 24-week supplement study[J]. Eur Rev Med Pharmacol Sci, 2017, 21(7): 1684-1689. [13] Molagoda IMN, Kang CH, Lee MH, et al. Fisetin promotes osteoblast differentiation and osteogenesis through GSK-3β phosphorylation at Ser9 and consequent β-catenin activation, inhibiting osteoporosis[J]. Biochem Pharmacol, 2021, 192: 114676. doi: 10.1016/j.bcp.2021.114676. [14] Hsin KY, Ghosh S, Kitano H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology[J]. PLoS One, 2013, 8(12): e83922. [15] Kim KT, Lee YS, Han I. The role of epigenomics in osteoporosis and osteoporotic vertebral fracture[J]. Int J Mol Sci, 2020, 21(24): E9455. [16] Zhao H, Zhao N, Zheng P, et al. Prevention and treatment of osteoporosis using Chinese medicinal plants: special emphasis on mechanisms of immune modulation[J]. J Immunol Res, 2018, 2018: 6345857. doi: 10.1155/2018/6345857. [17] Li Y, Zhang T. Targeting cancer stem cells by curcumin and clinical applications[J]. Cancer Lett, 2014, 346(2): 197-205. [18] Peddada KV, Peddada KV, Shukla SK, et al. Role of curcumin in common musculoskeletal disorders: a review of current laboratory, translational, and clinical data[J]. Orthop Surg, 2015, 7(3): 222-231. [19] 熊艺璇,赵斌,贾凌璐,等.姜黄素通过Nrf2信号通路促进炎症状态下牙周膜干细胞的成骨分化[J].山东大学学报(医学版), 2020, 58(5): 19-26. XIONG Yixuan, ZHAO Bin, JIA Linglu, et al. Curcumin promotes osteogenic differentiation of periodontal ligament stem cells under inflammatory conditions through the Nrf2 signaling pathway [J]. Journal of Shandong University(Medical Edition), 2020, 58(5): 19-26. [20] Saito K, Shinozuka T, Nakao A, et al. Synthesis and structure-activity relationship of 4-alkoxy-thieno[2,3-b] pyridine derivatives as potent alkaline phosphatase enhancers for osteoporosis treatment[J]. Bioorg Med Chem Lett, 2019, 29(14): 1769-1773. [21] Opdebeeck B, DHaese PC, Verhulst A. Inhibition of tissue non-specific alkaline phosphatase; a novel therapy against arterial media calcification? [J]. J Pathol, 2020, 250(3): 248-250. [22] Khorsand B, Elangovan S, Hong L, et al. A Comparative Study of the Bone Regenerative Effect of Chemically Modified RNA Encoding BMP-2 or BMP-9[J]. AAPS J, 2017, 19(2): 438-446. [23] Rim EY, Clevers H, Nusse R. The wnt pathway: from signaling mechanisms to synthetic modulators[J]. Annu Rev Biochem, 2022, 91: 571-598. doi: 10.1146/annurev-biochem-040320-103615. [24] Molagoda IMN, Kang CH, Lee MH, et al. Fisetin promotes osteoblast differentiation and osteogenesis through GSK-3β phosphorylation at Ser9 and consequent β-catenin activation, inhibiting osteoporosis[J]. Biochem Pharmacol, 2021, 192: 114676. doi: 10.1016/j.bcp.2021.114676. [25] Turnham RE, Scott JD. Protein kinase a catalytic subunit isoform PRKACA; History, function and physiology[J]. Gene, 2016, 577(2): 101-108. [26] Dutta R, Tiu B, Sakamoto KM. CBP/p300 acetyltransferase activity in hematologic malignancies[J]. Mol Genet Metab, 2016, 119(1/2): 37-43. [27] Syrovatkina V, Alegre KO, Dey R, et al. Regulation, signaling, and physiological functions of G-proteins[J]. J Mol Biol, 2016, 428(19): 3850-3868. [28] Cheng X, Liu D, Ren X, et al. The β-catenin/CBP signaling axis participates in sepsis-induced inflammatory lung injury[J]. Exp Biol Med(Maywood), 2022, 247(17): 1548-1557. [29] Ge L, Cui Y, Liu B, et al. ERα and Wnt/β catenin signaling pathways are involved in angelicin-dependent promotion of osteogenesis[J]. Mol Med Rep, 2019, 19(5): 3469-3476. [30] Morgan RG, Ridsdale J, Payne M, et al. LEF-1 drives aberrant β-catenin nuclear localization in myeloid leukemia cells[J]. Haematologica, 2019, 104(7): 1365-1377. [31] Ni F, Zhang T, Xiao W, et al. IL-18-mediated SLC7A5 overexpression enhances osteogenic differentiation of human bone marrow mesenchymal stem cells via the c-MYC pathway[J]. Front Cell Dev Biol, 2021, 9: 748831. doi: 10.3389/fcell.2021.748831. [32] Liu Z, Wu Y. Arctiin elevates osteogenic differentiation of MC3T3-E1 cells by modulating cyclin D1[J]. Bioengineered, 2022, 13(4): 10866-10874. [33] Jeong JH, Choi JY. Interrelationship of Runx2 and estrogen pathway in skeletal tissues[J]. BMB Rep, 2011, 44(10): 613-618. [34] Zhang X, Yang M, Lin L, et al. Runx2 overexpression enhances osteoblastic differentiation and mineralization in adipose - derived stem cells in vitro and in vivo[J]. Calcif Tissue Int, 2006,79(3): 169-178. [35] Qiu WX, Ma XL, Lin X, et al. Deficiency of Macf1 in osterix expressing cells decreases bone formation by Bmp2/Smad/Runx2 pathway[J]. J Cell Mol Med, 2020, 24(1): 317-327. [36] Ao Q, Wang SL, He Q, et al. Fibrin glue/fibronectin/heparin-based delivery system of BMP2 induces osteogenesis in MC3T3-E1 cells and bone formation in rat calvarial critical-sized defects[J]. ACS Appl Mater Interfaces, 2020, 12(11): 13400-13410. [37] Aghali A. Craniofacial bone tissue engineering: current approaches and potential therapy[J]. Cells, 2021, 10(11): 2993. [38] Kan T, He Z, Du J, et al. Irisin promotes fracture healing by improving osteogenesis and angiogenesis[J]. Orthop Translat, 2022, 37: 37-45. doi: 10.1016/j.jot.2022.07.006 [39] Hou ZY, Wang Z, Tao YX, et al. KLF2 regulates osteoblast differentiation by targeting of Runx2[J]. Lab Investig, 2019, 99(2): 271-280. [40] Martin V, Ribeiro IA, Alves MM, et al. Engineering a multifunctional 3D-printed PLA-collagen-minocycline-nanoHydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2019, 101: 15-26. doi: 10.1016/j.msec.2019.03.056. [41] Lee WB, Wang CF, Lee JH, et al. Whitlockite granules on bone regeneration in defect of rat Calvaria[J]. ACS Appl Bio Mater, 2020, 3(11): 7762-7768. [42] Mohamad N, Nabih ES, Zakaria ZM, et al. Insight into the possible role of miR-214 in primary osteoporosis via osterix[J]. J Cell Biochem, 2019, 120(9): 15518-15526. [43] Ghorbaninejad M, Khademi-Shirvan M, Hosseini S, et al. Effective role of Curcumin on expression regulation of EZH2 histone methyltransferase as a dynamic epigenetic factor in osteogenic differentiation of human mesenchymal stem cells[J]. Biochim Biophys Acta Gene Regul Mech, 2023, 1866(1): 194903. [44] Hu S, Huang Y, Chen Y, et al. Diosmetin reduces bone loss and osteoclastogenesis by regulating the expression of TRPV1 in osteoporosis rats[J]. Ann Transl Med, 2020, 8(20): 1312. |
[1] | 杜学识,倪向敏,梁馨予,白倩,朱文艺,王建. 雌马酚对DN的保护作用及潜在靶点[J]. 山东大学学报 (医学版), 2024, 62(8): 49-58. |
[2] | 张秉芬,周胜红,王哲. 延龄草皂苷通过抑制TGF-β/Smad3与Wnt/β-catenin信号通路改善大鼠肺纤维化[J]. 山东大学学报 (医学版), 2022, 60(8): 23-29. |
[3] | 李明波,黄燕波,刘俊城,任东成,谭成双,徐继禧,丁金勇. 黄芪桂枝五物汤治疗强直性脊柱炎的网络药理学探讨[J]. 山东大学学报 (医学版), 2022, 60(3): 29-38. |
[4] | 范晓艳,王元耕,陈泽涛. 黄芪桂枝五物汤治疗心衰的网络药理学机制[J]. 山东大学学报 (医学版), 2022, 60(11): 70-81. |
[5] | 于莹,张功,刘晶,颜世童,韩涛,黄海量. 基于网络药理学和分子对接方法探析黄芪预防新型冠状病毒肺炎的潜在作用机制[J]. 山东大学学报 (医学版), 2021, 59(4): 6-16. |
[6] | 丁菲,姜洁. 姜黄素对子宫内膜癌孕激素抵抗的影响[J]. 山东大学学报 (医学版), 2021, 59(4): 35-41. |
[7] | 熊艺璇,赵斌,贾凌璐,张文静,徐欣. 姜黄素通过Nrf2信号通路促进炎症状态下牙周膜干细胞的成骨分化[J]. 山东大学学报 (医学版), 2020, 58(5): 19-26. |
[8] | 洪甲庚,聂洋洋,苏国强. 丙泊酚对结肠癌细胞增殖、迁移及Wnt1和β-catenin表达的影响[J]. 山东大学学报 (医学版), 2020, 58(11): 53-58. |
[9] | 高源,季伟,肖丹,刘井,彭丹冰,季春. 基于网络药理学预测沙苑子的抗炎作用机制[J]. 山东大学学报 (医学版), 2019, 57(9): 59-68. |
[10] | 陈欧,李国勇,刘爱红,朱晓波,陈少杰,王一彪. 网络药理学预测麻黄治疗哮喘的抗炎作用机制[J]. 山东大学学报 (医学版), 2019, 57(1): 55-61. |
[11] | 李景媛,宋玲,林松,宋晖. 不同浓度一氧化碳释放分子-3对大鼠骨髓间充质干细胞成骨分化的影响[J]. 山东大学学报(医学版), 2017, 55(7): 31-37. |
[12] | 李珊珊,杨静,张瑾. 小鼠骨硬化蛋白的转录后调控机制[J]. 山东大学学报(医学版), 2017, 55(3): 43-48. |
[13] | 宋轲,刘寰,武文亮,刘海春,李尚志,陈允震. 骨髓间充质干细胞、血小板凝胶和体外冲击波联合应用治疗骨不连[J]. 山东大学学报(医学版), 2016, 54(6): 1-6. |
[14] | 吴彧,夏彦清,伍玥,孙琳,邬成业,娄桂予,李雅欣,丁松泽,孙恺. 炎性细胞模型中姜黄素对胆固醇逆转运蛋白ABCA1和ABCG1基因的影响[J]. 山东大学学报(医学版), 2016, 54(11): 24-26. |
[15] | 付海燕, 胡占升, 杜红阳, 李潮, 包翠芬. 地黄多糖对过表达Notch1(NICD)大鼠骨髓间充质干细胞诱导分化及增殖的影响[J]. 山东大学学报(医学版), 2015, 53(1): 34-40. |
|