您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2024, Vol. 62 ›› Issue (2): 29-35.doi: 10.6040/j.issn.1671-7554.0.2023.0893

• 基础医学 • 上一篇    

CD300c-Ig对小鼠关节损伤的影响及机制

田欣鑫1*,王立俊1*,李琳1,孙正达2,刘海燕1   

  1. 1.山东第一医科大学附属省立医院儿科, 山东 济南 250021;2.山东第一医科大学附属济南妇幼保健院新生儿科, 山东 济南 250001
  • 发布日期:2024-03-29
  • 通讯作者: 刘海燕. E-mail:haiyan0326@163.com *共同第一作者
  • 基金资助:
    山东省自然科学基金(ZR2020MH144)

Effects of CD300c-Ig on joint injury in mice with collagen-induced arthritis

TIAN Xinxin1*, WANG Lijun1*, LI Lin1, SUN Zhengda2, LIU Haiyan1   

  1. 1. Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China;
    2. Department of Neonatology, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan 250001, Shandong, China
  • Published:2024-03-29

摘要: 目的 探讨CD300c-Ig对胶原诱导性关节炎(collagen induced arthritish, CIA)小鼠关节损伤的影响及作用机制。 方法 分别在第1天及第21天免疫DBA/1J 小鼠,构建CIA模型,随机分为处理组和对照组,每组10只。处理组腹腔注射20 μg CD300c-Ig 100 μL,1次/3 d,共6次,总剂量为120 μg;对照组则腹腔注射相同质量的对照Ig蛋白(control-Ig),1次/3 d,共6次。观察四肢关节肿胀程度,记录关节炎指数评分;DBA/1J小鼠初次免疫40 d后,取小鼠脾脏制成单细胞悬液,流式细胞术检测调节性T细胞(T regulatory cells, Treg)、辅助性T细胞(T helper cells, Th17)、肿瘤坏死因子-α(tumor necrosis factor-α, TNF-α)、干扰素-γ( interferon-γ, IFN-γ)的表达;取小鼠下肢,脱钙,制成切片进行苏木精-伊红染色及番红O染色,观察小鼠关节病理特征并进行评分。采用荧光定量PCR法检测叉头框蛋白P3(forkhead box protein P3, Foxp3)、白介素-17(interleukin-17, IL-17)和白介素-23(interleukin-23, IL-23)的mRNA表达。 结果 处理组关节肿胀程度较对照组减轻,关节炎指数与对照组相比明显降低;苏木精-伊红染色及番红O染色显示,处理组关节滑膜细胞增殖较对照组减轻、血管翳形成、骨质侵蚀情况均比对照组有明显改善(P<0.05);流式细胞术检测结果显示,处理组脾脏Th17细胞比例较对照组明显降低(P<0.05),Treg细胞比例较对照组明显升高(P<0.05);同时,处理组脾脏TNF-α、IFN-γ表达与对照组相比明显降低(P<0.05);荧光定量PCR结果显示,处理组IL-17和IL-23 mRNA表达水平明显低于对照组。 结论 CD300c-Ig可减轻CIA小鼠的关节损伤,其机制与其对Th17/Treg 细胞平衡的调控和抑制炎性因子的释放有关。

关键词: CD300c, 细胞免疫, 调节性T细胞, 辅助性T细胞17, 胶原诱导性关节炎

Abstract: Objective To investigate the effects and mechanism of CD300c-Ig on joint injury in collagen-induced arthritis(CIA)mice. Methods To construct the CIA model, DBA/1J mice were immunized on day 1 and day 21, and then randomly divided into the treatment group and control group, with 10 mice in either group. Mice in the treatment group were intraperitoneally injected with 100 μL of 20 μg CD300c-Ig once every 3 days for 6 times, with a total dose of 120 μg; mice in the control group were intraperitoneally injected with control Ig of the same volume once every 3 days for 6 times. The degree of swelling in the joints of the extremities was observed and the arthritis index score was recorded. Forty days after the initial immunization, the spleens of the mice were taken to make single-cell suspension, and the expressions of T regulatory cells(Treg), T helper cells(Th17), tumor necrosis factor-α(TNF-α), and interferon-γ(IFN-γ)were detected with flow cytometry. The lower limbs of the mice were taken, decalcified, and sliced for hematoxylin-eosin staining and safranin O staining to visualize the pathological features of the joints and to score them. The mRNA expressions of forkhead box protein P3(Foxp3), interleukin-17(IL-17)and interleukin-23(IL-23)were detected with fluorescence quantitative PCR. Results The degree of joint swelling and AI in the treatment group were significantly reduced compared with those in the control group. Hematoxylin-eosin staining and saffron O staining showed that the proliferation of synoviocytes in the synovial joints of the treatment group was reduced, and the formation of vascular cataracts and the erosion of bone were significantly improved(P<0.05). Flow cytometry showed that the proportion of Th17 cells in the spleens of the treatment group was significantly lower(P<0.05)while the proportion of Treg cells was significantly higher(P<0.05). The expressions of TNF-α and IFN-γ in the spleen of the treatment group were significantly lower(P<0.05). Fluorescence quantitative PCR showed that the mRNA expressions of IL-17 and IL-23 in the treatment group were significantly lower. Conclusion CD300c-Ig can reduce joint injury in CIA mice, and the mechanism is related to its regulation of Th17/Treg cell balance and inhibition of inflammatory factor release.

Key words: CD300c, Cell-mediated immunity, T regulatory cell, T helper cell 17, Collagen-induced arthritis

中图分类号: 

  • R392.32
[1] 李涛, 王礼, 张廷. Foxp3磷酸化通过调控调节性T细胞功能对类风湿关节炎大鼠TNF-α抑制状态影响的分子机制[J]. 临床和实验医学杂志, 2020, 19(9): 921-924. LI Tao, WANG Li, ZHANG Ting. Molecular mechanism of Foxp3 phosphorylation on the inhibition of TNF-αin rheumatoid arthritis rats by regulating regulatory T cell function[J]. Journal of Clinical and Experimental Medicine, 2020, 19(9): 921-924.
[2] Vitallé J, Terrén I, Orrantia A, et al. Increased expression levels of CD300c on basophils from allergic individuals[J]. World Allergy Organ J, 2019, 12(9): 100060.
[3] Rozenberg P, Reichman H, Moshkovits I, et al. CD300 family receptors regulate eosinophil survival, chemotaxis, and effector functions[J]. J Leukoc Biol, 2018, 104(1): 21-29.
[4] Liu HY, Zhao J, Su M, et al. Recombinant CD300c-Ig fusion protein attenuates collagen-induced arthritis in mice[J]. Rheumatology(Oxford), 2022, 61(3): 1255-1264.
[5] Cui C, Su M, Lin Y, et al. A CD300c-fc fusion protein inhibits T cell immunity[J]. Front Immunol, 2018, 9: 2657. doi: 10.3389/fimmu.2018.02657.
[6] 姜慧钰, 王林, 潘继红. siRNA沉默PCSK6基因对胶原诱导性关节炎的影响[J]. 山东大学学报(医学版), 2015, 53(12): 20-26. JIANG Huiyu, WANG Lin, PAN Jihong. Effects of PCSK6 silence by siRNA on FLS in CIA[J]. Journal of Shandong University(Health Sciences), 2015, 53(12): 20-26.
[7] Tian X, Wei W, Cao Y, et al. Gingival mesenchymal stem cell-derived exosomes are immunosuppressive in preventing collagen-induced arthritis[J]. J Cell Mol Med, 2022, 26(3): 693-708.
[8] Mourão AF, Fonseca JE, Canhão H, et al. Practical guide for the use of biological agents in rheumatoid arthritis- December 2011 update[J]. Acta Reumatol Port, 2011, 36(4): 389-395.
[9] Clark GJ, Cooper B, Fitzpatrick S, et al. The gene encoding the immunoregulatory signaling molecule CMRF-35A localized to human chromosome 17 in close proximity to other members of the CMRF-35 family[J]. Tissue Antigens, 2001, 57(5): 415-423.
[10] Takahashi M, Izawa K, Kashiwakura JI, et al. Human CD300C delivers an Fc receptor-γ-dependent activating signal in mast cells and monocytes and differs from CD300A in ligand recognition[J]. J Biol Chem, 2013, 288(11): 7662-7675.
[11] Simhadri VR, Mariano JL, Gil-Krzewska A, et al. CD300c is an activating receptor expressed on human monocytes[J]. J Innate Immun, 2013, 5(4): 389-400.
[12] Tseng SY, Otsuji M, Gorski K, et al. B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells[J]. J Exp Med, 2001, 193(7): 839-846.
[13] Jackson DG, Hart DN, Starling G, et al. Molecular cloning of a novel member of the immunoglobulin gene superfamily homologous to the polymeric immunoglobulin receptor[J]. Eur J Immunol, 1992, 22(5): 1157-1163.
[14] Dimitrova M, Zenarruzabeitia O, Borrego F, et al. CD300c is uniquely expressed on CD56 bright Natural Killer Cells and differs from CD300a upon ligand recognition[J]. Sci Rep, 2016, 6: 23942. doi: 10.1038/srep23942.
[15] Paradowska-Gorycka A, Wajda A, Romanowska-Próchnicka K, et al. Th17/treg-related transcriptional factor expression and cytokine profile in patients with rheumatoid arthritis[J]. Front Immunol, 2020, 11: 572858. doi: 10.3389/fimmu.2020.572858.
[16] 李智伟, 田永芳, 卢佩佩, 等. 类风湿性关节炎患者淋巴细胞和Treg/Th17平衡的检测及意义[J]. 国际检验医学杂志, 2019, 40(16): 2026-2028. LI Zhiwei, TIAN Yongfang, LU Peipei, et al. Detection and significance of lymphocyte and Treg/Th17 balance in patients with rheumatoid arthritis[J]. International Journal of Laboratory Medicine, 2019, 40(16): 2026-2028.
[17] 杨金玲. 外周血中Th17/Treg亚群失衡与类风湿性关节炎的临床意义分析[J]. 黑龙江医学, 2019, 43(8): 957-959. YANG Jinling. Clinical significance of Th17/treg subsets imbalance in peripheral blood and rheumatoid arthritis[J]. Heilongjiang Medical Journal, 2019, 43(8): 957-959.
[18] Jiang Q, Yang GC, Liu Q, et al. Function and role of regulatory T cells in rheumatoid arthritis[J]. Front Immunol, 2021, 12: 626193. doi: 10.3389/fimmu.2021.626193.
[19] Yasuda K, Takeuchi Y, Hirota K. The pathogenicity of Th17 cells in autoimmune diseases[J]. Semin Immunopathol, 2019, 41(3): 283-297.
[20] Komatsu N, Takayanagi H. The role of IL-17 and related cytokines in inflammatory autoimmune diseases[J]. Nat Rev Rheumatol, 2022, 18(7): 415-429.
[21] Kuwabara T, Ishikawa F, Kondo M, et al. The role of IL-17 and related cytokines in inflammatory autoimmune diseases[J]. Mediators Inflamm, 2017, 2017:3908061. doi:10.1155/2017/3908061.
[22] Stadhouders R, Lubberts E, Hendriks RW. A cellular and molecular view of T helper 17 cell plasticity in autoimmunity[J]. J Autoimmun, 2018, 87: 1-15. doi: 10.1016/j.jaut.2017.12.007.
[23] Qin Y, Cai ML, Jin HZ, et al. Age-associated B cells contribute to the pathogenesis of rheumatoid arthritis by inducing activation of fibroblast-like synoviocytes via TNF-α-mediated ERK1/2 and JAK-STAT1 pathways[J]. Ann Rheum Dis, 2022, 81(11): 1504-1514.
[24] 罗硕. 类风湿性关节炎患者血清IL-6和TNF-α水平临床意义探讨[J]. 中国保健营养, 2018, 28(12): 11-12. LUO Shuo. The investigation of clinical significance of serum IL-6 and TNF - alpha levels in patients with rheumatoid arthritis[J]. China Health Care & Nutrition, 2018, 28(12): 11-12.
[25] Kato M. New insights into IFN-γ in rheumatoid arthritis: role in the era of JAK inhibitors[J]. Immunol Med, 2020, 43(2): 72-78.
[26] Hayashi S, Matsubara T, Fukuda K, et al. Predictive factors for effective selection of Interleukin-6 inhibitor and tumor necrosis factor inhibitor in the treatment of rheumatoid arthritis[J]. Sci Rep, 2020, 10: 16645. doi: 10.1038/s41598-020-73968-3.
[27] 徐连那, 李旭艳, 庞琳娜, 等. 类风湿性关节炎患者外周血Th1/Th2细胞因子与继发骨质疏松症的关系研究[J]. 国际免疫学杂志, 2023, 46(1): 25-32. XU Lianna, LI Xuyan, PANG Linna, et al. Relationship between Th1/Th2 cytokines in peripheral blood and secondary osteoporosis in rheumatoid arthritis patients[J]. International Journal of Immunology, 2023, 46(1): 25-32.
[1] 高惠茹,杜甜甜,王允山,杜鲁涛,王传新. 基于单细胞转录组测序数据分析胃癌调节性T细胞特征[J]. 山东大学学报 (医学版), 2022, 60(5): 43-49.
[2] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1-6.
[3] 余雪源,张硕,燕芳芳,苏德振. 采用清肺排毒汤联合西药43例与单用西药46例的新型冠状病毒肺炎临床疗效比较[J]. 山东大学学报 (医学版), 2020, 58(12): 47-53.
[4] 黄晓军. 细胞免疫治疗在血液系统恶性肿瘤的应用进展[J]. 山东大学学报 (医学版), 2019, 57(7): 1-5.
[5] 刘攀,何天祎,赵汝星,孙宇,陈丽. 百令胶囊对Graves病患者自身免疫的调理作用[J]. 山东大学学报(医学版), 2017, 55(9): 90-95.
[6] 李雪,李栋,时庆,周盼盼,鞠秀丽. Helios在儿童急性淋巴细胞性白血病调节性T细胞中的表达及功能[J]. 山东大学学报(医学版), 2017, 55(4): 76-81.
[7] 李秀华, 李晓丽, 段瑞生, 朱梅佳, 曹莉莉, 李衍滨, 王思, 岳龙涛, 马庆海, 刘菲. 1,25(OH)2D3诱导实验性自身免疫性重症肌无力大鼠免疫耐受的机制[J]. 山东大学学报(医学版), 2015, 53(8): 5-10.
[8] 李星宇, 梁婧, 李岩. 血管内皮抑素协同肿瘤特异性DC-T细胞的抗肿瘤效应[J]. 山东大学学报(医学版), 2015, 53(7): 19-23.
[9] 张蓬, 岳龙涛, 李亨, 张民, 王聪聪, 段瑞生, 窦迎春. 血脂康对实验性自身免疫性神经炎的治疗潜能[J]. 山东大学学报(医学版), 2015, 53(2): 1-5.
[10] 姜慧钰, 王林, 潘继红. siRNA沉默PCSK6基因对胶原诱导性关节炎的影响[J]. 山东大学学报(医学版), 2015, 53(12): 20-26.
[11] 李燕, 谢敏, 史小玲, 王晓燕, 唐利, 钟森, 陈庄. HSP70/CD80 DNA疫苗通过调节Th1/Th2/Treg/Th17细胞对小鼠急性哮喘的抑制作用[J]. 山东大学学报(医学版), 2014, 52(10): 20-24.
[12] 王介忠1,韩波1,高聆2,杨文巍1,刘奉琴1,吕建利1,赵立健1 . CD40siRNA对EAM大鼠的作用及其对CD4+CD25+Treg的影响[J]. 山东大学学报(医学版), 2014, 52(1): 1-4.
[13] 张林1,侯艳红1,张健2,胡静1,张静1. 抗人EGFR/抗CD3双功能抗体治疗胰腺癌的实验研究[J]. 山东大学学报(医学版), 2014, 52(1): 15-19.
[14] 王珊1,陈子江2,许成岩2,宋辉3,赵跃然4,傅艺冰1 . 不明原因早期复发性自然流产患者蜕膜组织CD158受体的表达[J]. 山东大学学报(医学版), 2012, 50(8): 103-107.
[15] 周秉侠1,郭淑兰1,许艳静2. FOXP3在玫瑰糠疹、扁平苔藓、大斑块型副银屑病及蕈样肉芽肿中的表达及意义[J]. 山东大学学报(医学版), 2012, 50(2): 102-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!