山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (12): 13-18.doi: 10.6040/j.issn.1671-7554.0.2022.0564
• • 上一篇
高燕1,朱庆颖2,栾明亚1,刘科卫1
GAO Yan1, ZHU Qingying2, LUAN Mingya1, LIU Kewei1
摘要: 目的 探讨托伐普坦(TLV)和达格列净(DAPA)对慢性心力衰竭大鼠心肌纤维化及转化生长因子β1(TGF-β1)表达的影响。 方法 将雄性Wistar大鼠随机分为空白对照组、模型对照组、TLV-L组、TLV-H组、DAPA组和TLV-H+DAPA组。除空白对照组外,其他各组大鼠均给予腹腔注射阿霉素3 mg/kg,1次/周,6周造模,心脏彩超检查射血分数<60%提示心衰大鼠造模成功,随机分组后药物干预30 d。采用苏木精-伊红染色法观察大鼠心脏组织形态学变化,采用Masson染色法检测心肌纤维化程度,并计算胶原容积分数(CVF);采用TUNEL染色法检测心肌细胞凋亡指数;采用Western blotting法检测各组大鼠左心室心肌组织中TGF-β1、磷酸化Smad2(p-Smad2)及磷酸化Smad3(p-Smad3)的蛋白水平。 结果 与空白对照组相比,模型对照组心肌纤维排列紊乱,较多炎性细胞浸润,心肌纤维化显著,细胞凋亡增加,TGF-β1蛋白表达显著升高,p-Smad2和p-Smad3蛋白水平下降(P<0.05);与模型对照组相比,TLV组、DAPA组及TLV-H+DAPA组心肌纤维化程度明显降低,心肌凋亡指数明显降低,差异有统计学意义(P<0.05),TGF-β1蛋白表达明显降低;p-Smad2和p-Smad3蛋白水平明显升高(P<0.05)。 结论 TLV与DAPA单用及联合应用均可通过抑制TGF-β1/Smad2/3信号通路发挥抑制心肌纤维化的作用,且联合用药的效果优于单独用药。
中图分类号:
[1] Braunwald E. The war against heart failure: the Lancet lecture [J]. Lancet, 2015, 385(9970): 812-824. [2] Roubille F, Busseuil D, Merlet N, et al. Investigational drugs targeting cardiac fibrosis [J]. Expert Rev Cardiovasc Ther, 2014, 12(1): 111-125. [3] Matsuzaki M, Hori M, Izumi T, et al. Tolvaptan Investigators. Efficacy and safety of tolvaptan in heart failure patients with volume overload despite the standard treatment with conventional diuretics: a phase III, randomized, double-blind, placebo-controlled study(QUEST study)[J]. Cardiovasc Drugs Ther, 2011, 25(Suppl 1): S33-S45. doi: 10.1007/s10557-011-6304-x. [4] Hori M. Tolvaptan for the treatment of hyponatremia and hypervolemia in patients with congestive heart failure [J]. Future Cardiol, 2013, 9(2): 163-176. [5] Packer M. Lessons learned from the DAPA-HF trial concerning the mechanisms of benefit of SGLT2 inhibitors on heart failure events in the context of other large-scale trials nearing completion [J]. Cardiovasc Diabetol, 2019, 18(1): 129. [6] Joshi SS, Singh T, Newby DE, et al. Sodium-glucose co-transporter 2 inhibitor therapy: mechanisms of action in heart failure [J]. Heart, 2021, 107(13): 1032-1038. [7] Schmidt SAJ, Lo S, Hollestein LM. Research techniques made simple: sample size estimation and power calculation [J]. J Invest Dermatol, 2018, 138(8): 1678-1682. [8] Yamazaki T, Izumi Y, Nakamura Y, et al. Tolvaptan improves left ventricular dysfunction after myocardial infarction in rats [J]. Circ Heart Fail, 2012, 5(6): 794-802. [9] 徐先静, 黄改荣, 段明勤, 等.托伐普坦对老年慢性心力衰竭合并轻中度肾功能不全伴低钠血症患者的疗效及安全性[J]. 中华老年医学杂志, 2021, 40(3): 292-296. XU Xianjing, HUANG Gairong, DUAN Mingqin, et al. Efficacy of Tolvaptan in elderly chronic heart failure patients combined with mild to moderate renal insufficiency with hyponatremia [J]. Chinese Journal of Geriatrics, 2021, 40(3): 292-296. [10] Tamaki S, Yamada T, Morita T, et al. Impact of adjunctive tolvaptan on sympathetic activity in acute heart failure with preserved ejection fraction [J]. ESC Heart Fail, 2020, 7(3): 933-937. [11] Seki T, Kubota Y, Matsuda J, et al. Clinical features and long-term prognosis of patients with congestive heart failure taking tolvaptan: a comparison of patients with preserved and reduced left ventricular ejection fraction [J]. Heart Vessels, 2022, 37(4): 574-582. [12] Yamazaki T, Nakamura Y, Shiota M, et al. Tolvaptan attenuates left ventricular fibrosis after acute myocardial infarction in rats [J]. J Pharmacol Sci, 2013, 123(1): 58-66. [13] Zannad F, Ferreira JP, Pocock SJ, et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials [J]. Lancet, 2020, 396(10254): 819-829. [14] Docherty KF, Jhund PS, Claggett B, et al. Extrapolating long-term event-free and overall survival with dapagliflozin in patients with heart failure and reduced ejection fraction: an exploratory analysis of a phase 3 randomized clinical trial [J]. JAMA Cardiol, 2021, 6(11): 1298-1305. [15] Shi L, Zhu D, Wang S, et al. Dapagliflozin attenuates cardiac remodeling in mice model of cardiac pressure overload [J]. Am J Hypertens, 2019, 32(5): 452-459. [16] Biernacka A, Dobaczewski M, Frangogiannis NG. TGF-β signaling in fibrosis [J]. Growth Factors, 2011, 29(5):196-202. [17] Turner NA, Porter KE. Function and fate of myofibroblasts after myocardial infarction [J]. Fibrogenesis Tissue Repair, 2013, 6(1): 5. [18] 马作旺, 张凯, 王卫定, 等. 托伐普坦通过调控微小RNA-21改善大鼠心房重构[J]. 中华心血管病杂志, 2019, 47(8): 614-621. MA Zuowang, ZHANG Kai, WANG Weiding, et al. Tolvaptan attenuates atrial remodeling in rats undergoing chronic intermittent hypoxia via miRNA-21 [J]. Chinese Journal of Cardiology, 2019, 47(8): 614-621. [19] Ishikawa M, Kobayashi N, Sugiyama F, et al. Renoprotective effect of vasopressin v2 receptor antagonist tolvaptan in Dahl rats with end-stage heart failure [J]. Int Heart J, 2013, 54(2): 98-106. [20] Zhang Y, Lin X, Chu Y, et al. Dapagliflozin: a sodium-glucose cotransporter 2 inhibitor, attenuates angiotensin II-induced cardiac fibrotic remodeling by regulating TGFβ1/Smad signaling [J]. Cardiovasc Diabetol, 2021, 20(1): 121. [21] Tingting H, Guangzhong L, Yanxiang Z, et al. Qiliqiangxin attenuates atrial structural remodeling in prolonged pacing-induced atrial fibrillation in rabbits [J]. Naunyn Schmiedebergs Arch Pharmacol, 2019, 392(5): 585-592. [22] Cui L, Wang Y, Yu R, et al. Jia-Shen decoction-medicated serum inhibits angiotensin-II induced cardiac fibroblast proliferation via the TGF-β1/Smad signaling pathway [J]. Mol Med Rep, 2016, 14(2): 1610-1616. [23] Su HH, Liao JM, Wang YH, et al. Exogenous GDF11 attenuates non-canonical TGF-β signaling to protect the heart from acute myocardial ischemia-reperfusion injury [J]. Basic Res Cardiol, 2019, 114(3): 20. [24] Subrahmanian S, Varshney R, Subramani K, et al. N-Acetylcysteine inhibits aortic stenosis progression in a murine model by blocking shear-induced activation of platelet latent transforming growth factor Beta 1 [J]. Antioxid Redox Signal, 2021, 7. doi: 10.1089/ars.2021.0037. [25] Peng MZ, Yang ML, Shen AL, et al. Huoxin pill attenuates cardiac fibrosis by suppressing TGF-β1/Smad2/3 pathway in isoproterenol-induced heart failure rats [J]. Chin J Integr Med, 2021, 27(6): 424-431. [26] García R, Nistal JF, Merino D, et al. p-SMAD2/3 and DICER promote pre-miR-21 processing during pressure overload-associated myocardial remodeling [J]. Biochim Biophys Acta, 2015, 1852(7): 1520-1530. [27] Chen W, He S, Xiang D. Hypoxia-induced retinal pigment epithelium cell-derived bFGF promotes the migration and angiogenesis of HUVECs through regulating TGF-β1/smad2/3 pathway [J]. Gene, 2021,790: 145695. doi: 10.1016/j.gene.2021.145695. |
[1] | 董雪,赵霞,程子捷,韩毅. 左西孟旦和米力农治疗重症心力衰竭合并肾损伤患者711例的药物经济学评价[J]. 山东大学学报 (医学版), 2022, 60(4): 91-98. |
[2] | 李鸿皓,于晶,陈亚丽,郭守刚. 20例NMOSD患者CD4+CD25+FoxP3+调节性T细胞数量和FoxP3 mRNA的表达水平[J]. 山东大学学报 (医学版), 2022, 60(4): 50-54. |
[3] | 范晓艳,王元耕,陈泽涛. 黄芪桂枝五物汤治疗心衰的网络药理学机制[J]. 山东大学学报 (医学版), 2022, 60(11): 70-81. |
[4] | 兰洪涛,贾旭,童洲杰,郑曼,胡伯昂,钟明,张薇,王志浩. 无选择性152例成年慢性心力衰竭患者再入院的危险因素[J]. 山东大学学报 (医学版), 2021, 59(4): 63-69. |
[5] | 丁华琳,李扬扬,于丰源,战伟伟,于苏国. 达格列净通过Klotho/TGF-β1通路抑制糖尿病肾病大鼠肾纤维化的作用[J]. 山东大学学报 (医学版), 2020, 58(3): 75-80. |
[6] | 张淑莹,武晓峰,郭丽敏,乔温,彭洁琼,李大庆. 两种阿霉素心力衰竭模型及心功能进展的评估[J]. 山东大学学报 (医学版), 2020, 58(12): 1-7. |
[7] | 米传晓,刘军妮,邹承伟,周南南. 血清可溶性肿瘤因子2抑制剂、半乳糖凝集素-3蛋白水平在慢性心衰分级及预后中的应用[J]. 山东大学学报 (医学版), 2019, 57(1): 62-67. |
[8] | 严芳英,单晓兰,李静媛,张杰,闫雪芳,杨奕,卜培莉. 吡格列酮通过调控Sirt3改善高血压引起的心肌纤维化机制[J]. 山东大学学报(医学版), 2017, 55(5): 13-18. |
[9] | 牛纪媛,王方利,张瑞斌,高庆贞,贠萍,王琪,张珊,白雪,王小平. 局部外膜缓释西罗莫司对内瘘血管内膜增生的影响[J]. 山东大学学报(医学版), 2016, 54(8): 17-21. |
[10] | 姜蕴珊,谈红,李晓燕,苏莉,张国明,张红明,孟楠. 培哚普利对慢性心力衰竭患者血浆miR-423-5p的调控及对心功能的影响[J]. 山东大学学报(医学版), 2016, 54(8): 55-59. |
[11] | 许天一,吴萍,王爱玲,陈丽萍. 米力农雾化治疗小儿重症肺炎合并心力衰竭的疗效[J]. 山东大学学报(医学版), 2016, 54(7): 88-90. |
[12] | 席福立,张梅. MicroRNA-34a在心肌纤维化过程中对SH2B3的表达调控[J]. 山东大学学报(医学版), 2016, 54(2): 6-10. |
[13] | 刘彩峰, 汪明明, 李新立, 崔速南. 托伐普坦治疗肝硬化顽固性腹水并低钠血症的疗效[J]. 山东大学学报(医学版), 2016, 54(1): 33-37. |
[14] | 王勇, 厉泉, 陈善良, 王东, 于建民, 李敏, 刘天起. microRNA-133对终末期扩张型心肌病心肌纤维化调控的作用[J]. 山东大学学报(医学版), 2015, 53(5): 60-65. |
[15] | 刘振中, 姜笃银, 王魏, 宗宪磊, 张基勋, 刘磊. 转化生长因子-β1噬菌体模拟肽促进成纤维细胞增殖的效果[J]. 山东大学学报(医学版), 2015, 53(3): 50-55. |
|