您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2018, Vol. 56 ›› Issue (7): 7-14.doi: 10.6040/j.issn.1671-7554.0.2017.929

• • 上一篇    

具核梭杆菌灌胃对大鼠肠道菌群的影响

宋立锦,顾湘,李理想,李铭,左秀丽,李延青   

  1. 山东大学齐鲁医院消化内科, 山东 济南 250012
  • 发布日期:2022-09-27
  • 通讯作者: 左秀丽. E-mail: zuoxiuli@sina.com
  • 基金资助:
    国家自然科学基金(81570485)

Effects of Fusobacterium nucleatum gavage on the intestinal microbiota of rats

SONG Lijin, GU Xiang, LI Lixiang, LI Ming, ZUO Xiuli, LI Yanqing   

  1. Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
  • Published:2022-09-27

摘要: 目的 探究具核梭杆菌(Fusobacterium nucleatum)灌胃对健康大鼠肠道菌群的影响。 方法 将16只SD雄性大鼠随机分为2组(每组8只),处理组在大鼠第4、5、6、7、8周龄分别用具核梭杆菌灌胃1次,对照组在相同时间点以等量生理盐水灌胃。在大鼠第3、8、12周末收集粪便,提取DNA后通过Illumina Miseq平台进行16S rRNA基因高通量测序。应用蛋白印迹法检测大鼠粪便中针对具核梭杆菌的特异性IgA。 结果 第3周时,两组在菌群多样性、主要菌门水平方面的差异无统计学意义。第8周时,处理组菌群多样性明显低于对照组(P=0.009);处理组的厚壁菌门、变形菌门含量低于对照组,拟杆菌门含量高于对照组,差异均有统计学意义(P<0.05)。第12周时,处理组菌群多样性明显高于对照组(P=0.021),两组大鼠肠道菌群的主要菌门水平差异无统计学意义。同时,具核梭杆菌灌胃刺激机体产生了特异性IgA。 结论 具核梭杆菌通过未定植方式,对肠道菌群产生了影响,并可持续一定时间。具核梭杆菌刺激产生的特异性IgA可能是其不能在肠道定植的原因之一。

关键词: 具核梭杆菌, 肠道菌群, 高通量测序, 大鼠

Abstract: Objective To investigate the effects of Fusobacterium nucleatum(F. nucleatum)gavage on the intestinal microbiota of rats. Methods A total of 16 male SD rats were randomly divided into 2 groups: intervention group(n=8)and control group(n=8). The intervention group was treated with F. nucleatum when the rats were 4, 5, 6, 7 and 8 weeks old. The control group was treated with the same dosage of normal saline at the same time. Feces was collected at the end of week 3, 8 and 12 to extract DNA, and then Illumina Miseq platform was used for 16S rRNA gene sequencing. Specific IgA against F. nucleatum in stool was detected with Western blotting. Results There were no significant differences between the two groups in terms of fecal microbial diversity and relative abundance of main phyla in week 3. The microbial diversity of the intervention group was significantly lower than that of the control group in week 8(P=0.009). The relative abundances of Firmicutes and Proteobacteriodes in the intervention group were significantly less than those in the control group(P<0.05), while the relative abundance of Bacteriodes in the intervention group was significantly higher than that in the control group in week 8(P<0.05). In week 12, the intervention group showed higher diversity(P=0.021), and there was no significant difference in the relative abundance of main phyla. Moreover, the treatment of F. nucleatum stimulated the production of specific IgA. Conclusion The F. nucleatum can interfere with intestinal microbiota independent on colonization, and this effect can last for some time. The production of specific IgA induced by F. nucleatum may explain why this bacterium does not colonize in the intestine.

Key words: Fusobacterium nucleatum, Intestinal microbiota, High-throughput sequencing, Rats

中图分类号: 

  • R574
[1] Han YW. Fusobacterium nucleatum: a commensal-turned pathogen[J]. Curr Opin Microbiol, 2015, 23:141-147.doi:10.1016/j.mib.2014.11.013.
[2] Strauss J, Kaplan GG, Beck PL, et al. Invasive potential of gut mucosa-derived Fusobacterium nucleatum positively correlates with IBD status of the host[J]. Inflamm Bowel Dis, 2011, 17(9):1971-1978.
[3] Han YW, Fardini Y, Chen C, et al. Term stillbirth caused by oral Fusobacterium nucleatum[J]. Obstet Gynecol, 2010, 115(2 Pt 2):442-445.
[4] Yang Y, Weng W, Peng J, et al. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating Toll-like receptor 4 signaling to nuclear factor-kappaB, and up-regulating expression of microRNA-21[J]. Gastroenterology, 2017, 152(4):851-866.
[5] Swidsinski A, Dorffel Y, Loening-Baucke V, et al. Acute appendicitis is characterised by local invasion with Fusobacterium nucleatum/necrophorum[J]. Gut, 2011, 60(1):34-40.
[6] Gur C, Ibrahim Y, Isaacson B, et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack[J]. Immunity, 2015, 42(2):344-355.
[7] Rubinstein MR, Wang X, Liu W, et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin[J]. Cell Host Microbe, 2013, 14(2):195-206.
[8] Nakagaki H, Sekine S, Terao Y, et al. Fusobacterium nucleatum envelope protein FomA is immunogenic and binds to the salivary statherin-derived peptide[J]. Infect Immun, 2010, 78(3):1185-1192.
[9] Abed J, Emgard JE, Zamir G, et al. Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc[J]. Cell Host Microbe, 2016, 20(2):215-225.
[10] Yu T, Guo F, Yu Y, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy[J]. Cell, 2017, 170(3):548-563.e16.
[11] Stecher B, Hardt WD. Mechanisms controlling pathogen colonization of the gut[J]. Curr Opin Microbiol, 2011, 14(1):82-91.
[12] Levy M, Kolodziejczyk AA, Thaiss CA, et al. Dysbiosis and the immune system[J]. Nat Rev Immunol, 2017, 17(4):219-232.
[13] Simren M, Barbara G, Flint HJ, et al. Intestinal microbiota in functional bowel disorders: a Rome foundation report[J]. Gut, 2013, 62(1):159-176.
[14] Marchesi JR, Adams DH, Fava F, et al. The gut microbiota and host health: a new clinical frontier[J]. Gut, 2016, 65(2):330-339.
[15] Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome[J]. Nature, 2011, 473(7346):174-180.
[16] Tettamanti L, Gaudio RM, Cura F, et al. Prevalence of periodontal pathogens among italian patients with chronic periodontitis: a retrospective study on 2992 patients[J]. Oral Implantol(Rome), 2017, 10(1):28-36.
[17] Wang HF, Li LF, Guo SH, et al. Evaluation of antibody level against Fusobacterium nucleatum in the serological diagnosis of colorectal cancer[J]. Sci Rep, 2016, 6:33440. doi: 10.1038/srep33440.
[18] Edgar RC. Search and clustering orders of magnitude faster than BLAST[J]. Bioinformatics, 2010, 26(19):2460-2461.
[19] Lan Y, Wang Q, Cole JR, et al. Using the RDP classifier to predict taxonomic novelty and reduce the search space for finding novel organisms[J]. PLoS One, 2012, 7(3):e32491. doi: 10.1371/journal.pone.0032491
[20] Lundberg DS, Yourstone S, Mieczkowski P, et al. Practical innovations for high-throughput amplicon sequencing[J]. Nat Methods, 2013, 10(10):999-1002.
[21] Zhang C, Li S, Yang L, et al. Structural modulation of gut microbiota in life-long calorie-restricted mice[J]. Nat Commun, 2013, 4:2163. doi: 10.1038/ncomms3163.
[22] Kaplan CW, Lux R, Haake SK, et al. The Fusobacterium nucleatum outer membrane protein RadD is an arginine-inhibitable adhesin required for inter-species adherence and the structured architecture of multispecies biofilm[J]. Mol Microbiol, 2009, 71(1):35-47.
[23] Nwizu NN, Marshall JR, Moysich K, et al. Periodontal disease and incident cancer risk among postmenopausal women: results from the Womens Health Initiative Observational Cohort[J]. Cancer Epidemiol Biomarkers Prev, 2017, 26(8):1255-1265.
[24] Michaud DS, Liu Y, Meyer M, et al. Periodontal disease, tooth loss, and cancer risk in male health professionals: a prospective cohort study[J]. Lancet Oncol, 2008, 9(6):550-558.
[25] Barton MK. Evidence accumulates indicating periodontal disease as a risk factor for colorectal cancer or lymphoma[J]. CA Cancer J Clin, 2017, 67(3):173-174.
[26] Momen-Heravi F, Babic A, Tworoger SS, et al. Periodontal disease, tooth loss and colorectal cancer risk: results from the nurses’ health study[J]. Int J Cancer, 2017, 140(3):646-652.
[27] Bertrand KA, Shingala J, Evens A, et al. Periodontal disease and risk of non-Hodgkin lymphoma in the health professionals follow-up Study[J]. Int J Cancer, 2017, 140(5):1020-1026.
[28] 束蓉. 牙周病病因及治疗研究进展[J]. 上海交通大学学报(医学版), 2007,27(6):625-628. SHU Rong. Research advances in etiology and treatment of periodontal disease[J]. Journal of Shanghai Jiaotong University(Medical Science), 2007, 27(6):625-628.
[29] Saygun I, Nizam N, Keskiner I, et al. Salivary infectious agents and periodontal disease status[J]. J Periodontal Res, 2011, 46(2):235-239.
[30] Nakajima M, Arimatsu K, Kato T, et al. Oral administration of P. gingivalis induces dysbiosis of gut microbiota and impaired barrier function leading to dissemination of enterobacteria to the liver[J]. PLoS One, 2015, 10(7):e0134234. doi:10.1371/journal.pone.0134234.
[31] 赵力, 李理想, 陈飞雪, 等. 枯草芽孢杆菌灌胃对小鼠肠道菌群的影响[J]. 山东大学学报(医学版), 2017,55(10):28-35. ZHAO Li, LI Lixiang, CHEN Feixue, et al. Effect of Bacillus subtilis gavage on the intestinal microbiota of mice[J]. Journal of Shandong University(Health Sciences), 2017, 55(10):28-35.
[32] Dethlefsen L, McFall-Ngai M, Relman DA. An ecological and evolutionary perspective on human-microbe mutualism and disease[J]. Nature, 2007, 449(7164):811-818.
[33] Stecher B, Hardt WD. The role of microbiota in infectious disease[J]. Trends Microbiol, 2008, 16(3):107-114.
[34] Kabat AM, Srinivasan N, Maloy KJ. Modulation of immune development and function by intestinal microbiota[J]. Trends Immunol, 2014, 35(11):507-517.
[35] Macpherson AJ, Uhr T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria[J]. Science, 2004, 303(5664):1662-1665.
[36] Norman JM, Handley SA, Baldridge MT, et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease[J]. Cell, 2015, 160(3):447-460.
[37] Shah MS, DeSantis TZ, Weinmaier T, et al. Leveraging sequence-based faecal microbial community survey data to identify a composite biomarker for colorectal cancer[J]. Gut, 2018, 67(5):882-891.
[38] Monaco CL, Gootenberg DB, Zhao G, et al. Altered virome and bacterial microbiome in human immunodeficiency virus-associated acquired immunodeficiency syndrome[J]. Cell Host Microbe, 2016, 19(3):311-322.
[39] Kostic AD, Gevers D, Siljander H, et al. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes[J]. Cell Host Microbe, 2015, 17(2):260-273.
[40] Wright EK, Kamm MA, Teo SM, et al. Recent advances in characterizing the gastrointestinal microbiome in Crohn's disease: a systematic review[J]. Inflamm Bowel Dis, 2015, 21(6):1219-1228.
[41] 谢莉敏, 李丹, 程秀芳, 等. 益生菌的种类及其在人体营养保健中的应用研究[J]. 安徽农业科学, 2013(17):7694-7695. XIE Limin, LI Dan, CHENG Xiufang, et al. On species and application of probiotics in human nutrition and health care [J]. Journal of Anhui Agri, 2013, 41(17):7694-7695.
[1] 吴逸南 葛志明 李方 贺红 姜虹 张运. 自发性高血压大鼠肾脏血管紧张素转换酶2的表达[J]. 山东大学学报(医学版), 2209, 47(6): 5-.
[2] 祝林 胡三元 张光永 丁祥就. 前列腺素E2对阻塞性黄疸大鼠小肠粘膜形态的保护作用[J]. 山东大学学报(医学版), 2209, 47(6): 12-.
[3] 孙涛 张道来 谢珊珊 王玉卓 冯玉新 辛华. 酒精对原代培养的神经前体细胞间隙连接蛋白43表达的影响[J]. 山东大学学报(医学版), 2209, 47(6): 20-.
[4] 张道来 孙涛 谢珊珊 王玉卓 赵玲 冯玉新 辛华. 体外原代培养胎鼠大脑皮层神经元NMDAR1亚基表达的发育性变化[J]. 山东大学学报(医学版), 2209, 47(6): 28-32.
[5] 虎娜,孙苗,邢莎莎,许丹霞,海小明,马玲,杨丽,勉昱琛,何瑞,陈冬梅,马会明. 月见草油抵抗多囊卵巢综合征大鼠卵巢氧化应激[J]. 山东大学学报 (医学版), 2022, 60(5): 22-30.
[6] 张正铎,吴虹,祁少俊,唐延金,高希宝. 口服5-甲基四氢叶酸对大鼠阿尔茨海默病的预防作用[J]. 山东大学学报 (医学版), 2022, 60(3): 13-23.
[7] 赵慧文,许琳,单姗,赵秀兰. 牛磺酸对1-溴丙烷致大鼠认知功能障碍的保护作用[J]. 山东大学学报 (医学版), 2022, 60(2): 14-21.
[8] 郭曼,刘鹏,龙麟. 防纤汤对放射性肺炎大鼠的影响及作用机制[J]. 山东大学学报 (医学版), 2021, 59(8): 53-60.
[9] 南莉,杨凯转,张一帆. 室内照明白色发光二极管对大鼠视网膜的影响[J]. 山东大学学报 (医学版), 2021, 59(4): 56-62.
[10] 王海鹏,邹娟娟,高春苗,王孝,王岩,李延忠. OSAHS慢性间歇性低氧大鼠模型的建立及意义[J]. 山东大学学报 (医学版), 2021, 59(2): 7-13.
[11] 韩晓婷,于霞,董来慧,纳莉,牛艳玲,赵君利. 月见草油对肥胖型不孕女性代谢及肠道菌群的影响[J]. 山东大学学报 (医学版), 2021, 59(2): 48-54.
[12] 张霁娟,于汉成,王蓝,陈诺,崔书萌,高希宝. 高脂膳食、硒对大鼠抗氧化功能的影响[J]. 山东大学学报 (医学版), 2021, 59(1): 95-101.
[13] 汪倩倩,王旭霞,乔青芳,王英姿,杨盼盼,张君. 交感神经信号对大鼠正畸牙根吸收的影响[J]. 山东大学学报 (医学版), 2018, 56(1): 76-80.
[14] 张亮,徐敏,庄向华,娄福臣,娄能俊,吕丽,郭文娟,郑凤杰,陈诗鸿. 内质网应激与凋亡在糖尿病周围神经病变中的表达变化[J]. 山东大学学报(医学版), 2017, 55(8): 13-17.
[15] 刘芳,乔蕾,陈文超,杨丽娜. 大蒜素后处理对大鼠心肌缺血-再灌注损伤的保护作用[J]. 山东大学学报(医学版), 2017, 55(7): 6-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!