您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2016, Vol. 54 ›› Issue (8): 6-11.doi: 10.6040/j.issn.1671-7554.0.2015.1171

• • 上一篇    下一篇

miR-1/133对病毒性心肌炎小鼠心肌细胞离子通道表达的影响

刘蒙蒙,赵翠芬,孔清玉,蔡直锋,夏伟   

  1. 山东大学齐鲁医院儿科, 山东 济南 250012
  • 收稿日期:2015-11-26 出版日期:2016-08-10 发布日期:2016-08-10
  • 通讯作者: 赵翠芬. E-mail:zhaocuifen@sdu.edu.cn E-mail:zhaocuifen@sdu.edu.cn
  • 基金资助:
    山东省科技发展计划(2014GSF118066)

miR-1/133 participates in the expression of ion channel genes of myocardial cells in myocarditis mice

LIU Mengmeng, ZHAO Cuifen, KONG Qingyu, CAI Zhifeng, XIA Wei   

  • Received:2015-11-26 Online:2016-08-10 Published:2016-08-10

摘要: 目的 探讨miR-1/133是否参与病毒性心肌炎心肌细胞钾离子、钙离子通道基因表达的调节。 方法 建立Balb/c小鼠急性病毒性心肌炎模型。将小鼠分为对照组、心肌炎组、心肌炎+miR-1/133mimics组、心肌炎+miR-1/133 NC组,每组10只。采用苏木精-伊红染色法观察心肌形态学改变;采用 qRT-PCR法检测心肌中miR-1、miR-133及Kcnd2、Irx5、Kcnj2和α1c的相对表达量; 采用Western blotting法检测心肌中蛋白Kv4.2、Kir2.1、Cav1.2的相对表达量。 结果 苏木精-伊红染色显示对照组心肌细胞排列整齐,间质无炎性细胞浸润;心肌炎组与心肌炎+miR-1/133 NC组心肌细胞水肿、排列紊乱,炎性细胞浸润间质;心肌炎+miR-1/133mimics组心肌细胞排列较整齐,无细胞水肿,间质少量炎性细胞浸润。与对照组相比,心肌炎组与心肌炎+miR-1/133 NC组心肌miR-1、miR-133及Kcnd2、Kcnj2表达下调,蛋白Kv4.2、Kir2.1的表达下调(P<0.01);Irx5、α1c及蛋白Cav1.2表达均上调(P<0.01);心肌炎+miR-1/133 mimics组较心肌炎组与心肌炎+miR-1/133 NC组相比,miR-1、miR-133及Kcnd2、Kcnj2表达上调,蛋白Kv4.2、Kir2.1表达上调(P<0.05),Irx5、α1c及蛋白Cav1.2表达均下调(P<0.01)。 结论 miR-1/133参与病毒性心肌炎心肌细胞钾离子和钙离子通道基因表达的调节。

关键词: 钾通道, 钙通道, 基因表达, 微小RNA-1, 微小RNA-133, 病毒性心肌炎

Abstract: Objective To explore the involvement of miR-1/133 in regulating the expression of potassium and calcium ion channel in mouse with acute viral myocarditis. Methods After the mice models of acute viral myocarditis were established, they were divided into 4 groups: control group, viral myocarditis group, myocarditis+miR-1/133 mimics group, and myocarditis+miR-1/133 NC group, with 10 mice in each group. The myocardial pathological changes were observed with HE staining. The expressions of miR-1, miR-133, Kcnd2, Irx5, Kcnj2, and α1c in myocardium were detected with qRT-PCR. The expressions of Kv4.2, Kir2.1, and Cav1.2 in myocardium were detected with Western blotting. Results HE staining showed that, in the control group, myocardial cells arranged orderly, and no inflammatory cells infiltrated myocardium matrix; in the myocarditis group and myocarditis+miR-1/133 NC group, myocardial cells swelled and arranged disorderly, and inflammatory cells infiltrated myocardium matrix; in the myocarditis+miR-1/133 mimics group, myocardial cells arranged orderly without cell edema, and few inflammatory cells infiltrated myocardium matrix. Compared with the control group, in the myocarditis group and myocarditis+miR-1/133 NC group, the expressions of miR-1, miR-133, Kcnd2, Kcnj2, Kv4.2 and Kir2.1 in the myocardium significantly decreased(P<0.01), while the expressions of Irx5, α1c and Cav1.2 increased(P<0.01). Compared with the myocarditis 山 东 大 学 学 报 (医 学 版)54卷8期 -刘蒙蒙,等.miR-1/133对病毒性心肌炎小鼠心肌细胞离子通道表达的影响 \=-group and myocarditis+miR-1/133 NC group, in the myocarditis+miR-1/133 mimics group, the expressions of miR-1, miR-133, Kcnd2, Kcnj2, Kv4.2 and Kir2.1 in the myocardium were upregulated(P<0.05), while the expressions of Irx5, α1c and Cav1.2 were downregulated(P<0.01). Conclusion miR-1/133 is involved in the regulation of calcium and potassium ion channel gene expression in mice with acute viral myocarditis.

Key words: Potassium channel, miR-1, miR-133, Viral myocarditis, Calcium channel, Gene expression

中图分类号: 

  • R725.4
[1] Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA[J]. Nature, 2004, 431(7006):343-349.
[2] Alvarez-Garcia I, Miska EA. MicroRNA functions in animal development and human disease[J]. Development, 2005, 132(21):4653-4662.
[3] Miranda KC, Huynh T, Tay Y, et al. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes[J]. Cell, 2006, 126(6):1203-1217.
[4] Takaya T, Ono K, Kawamura T, et al. MicroRNA-1 and MicroRNA-133 in spontaneous myocardial differentiation of mouse embryonic stem cells[J]. Circ J, 2009, 73(8):1492-1497.
[5] Besser J, Malan D, Wystub K, et al. MiRNA-1/133a clusters regulate adrenergic control of cardiac repolarization[J]. PLoS One, 2014, 9(11):113449. doi:10.1371.
[6] Feldman AM, McNamara D. Myocarditis[J]. N Engl J Med, 2000, 343(19):1388-1398.
[7] Rose NR, Herskowitz A, Neumann DA. Autoimmunity in myocarditis:models and mechanisms[J]. Clin Immunol Immunopathol, 1993, 68(2):95-99.
[8] Care A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertrophy[J]. Nat Med, 2007, 13(5):613-618.
[9] Tao G, Martin JF. MicroRNAs get to the heart of development[J]. Elife, 2013, 2:1710. doi:10.7554.
[10] He B, Xiao J, Ren A J, et al. Role of miR-1 and miR-133a in myocardial ischemic postconditioning[J]. J Biomed Sci, 2011, 18:22.
[11] Sayed D, Hong C, Chen IY, et al. MicroRNAs play an essential role in the development of cardiac hypertrophy[J]. Circ Res, 2007, 100(3):416-424.
[12] Yang B, Lin H, Xiao J, et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2[J]. Nat Med, 2007, 13(4):486-491.
[13] Wang GK, Zhu JQ, Zhang JT, et al. Circulating microRNA:a novel potential biomarker for early diagnosis of acute myocardial infarction in humans[J]. Eur Heart J, 2010, 31(6):659-666.
[14] 刘玉学, 王欣. 心房颤动中心房重构机制的研究进展[J]. 中国胸心血管外科临床杂志, 2009, 16(3):218-222. LIU Yuxue, WANG Xin. Advances of mechanism of the atrial remodeling in atrial fibrillation[J]. Chin J Clin Thorac Cardiovasc Surg, 2009, 16(3):218-222.
[15] Guo Q, Peng TQ, Yang YZ. Effect of Astragalus membranaceus on Ca2+ influx and coxsackie virus B3 RNA replication in cultured neonatal rat heart cells[J]. Chinese J of Integrated Traditional and Western Med, 1995, 15(8):483-485.
[16] Shan H, Zhang Y, Cai B, et al. Upregulation of microRNA-1 and microRNA-133 contributes to arsenic-induced cardiac electrical remodeling[J]. Int J Cardiol, 2013, 167(6):2798-2805.
[17] Lu Y, Zhang Y, Shan H, et al. MicroRNA-1 downregulation by propranolol in a rat model of myocardial infarction:a new mechanism for ischaemic cardioprotection[J]. Cardiovasc Res, 2009, 84(3):434-441.
[18] Diaz RJ, Zobel C, Cho HC, et al. Selective inhibition of inward rectifier K+ channels(Kir2.1 or Kir2.2)abolishes protection by ischemic preconditioning in rabbit ventricular cardiomyocytes[J]. Circ Res, 2004, 95(3):325-332.
[19] Costantini DL, Arruda EP, Agarwal P, et al. The homeodomain transcription factor Irx5 establishes the mouse cardiac ventricular repolarization gradient[J]. Cell, 2005,123(2):347-358.
[20] Zhao Y, Ransom JF, Li A, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2[J]. Cell, 2007, 129(2):303-317.
[21] 王玉琴, 耿鹏, 吴扬. miR-1和miR-133a对大鼠肥大心肌细胞L-型钙通道Cavβ_2和α1c亚基的调控作用[J]. 基础医学与临床, 2015, 35(2):196-202. WANG Yuqin, GENG Peng, WU Yang. Regulation of miR-1 and miR-133a on L-type calcium channel Cavβ2 and α1c subunits in rat cardiomyocyte hypertrophy[J]. Basic & Clinical Medicine, 2015, 35(2):196-202.
[1] 李昌,张倩,马芳,解奇,常晓天. PADI2与人多种肿瘤的遗传易感性的关系[J]. 山东大学学报(医学版), 2017, 55(11): 47-53.
[2] 张雯1,冯婷婷1,郑琳1,王红1,卢翌2,齐眉1,于修平1,唐伟1,赵蔚明1 . 重组腺病毒介导的RbAp48基因表达对人宫颈癌细胞生长、增殖的影响[J]. 山东大学学报(医学版), 2014, 52(4): 13-17.
[3] 裴长安,秦士勇,陈士辉,张曙光. 下肢静脉曲张患者外周血Nelin水平测定及意义[J]. 山东大学学报(医学版), 2013, 51(9): 64-66.
[4] 张玉颖,张晾,潘杰. Tet-on系统诱导COX1基因在小鼠前脂肪细胞3T3-L1中的表达[J]. 山东大学学报(医学版), 2013, 51(5): 24-28.
[5] 陆冠延1,崔彬2,刘忠良3,李玉瑭4,刘雪飞3,马晓静1,朱贵月1,苑海涛1. 缬沙坦对慢性病毒性心肌炎小鼠Th17/Treg免疫平衡的影响[J]. 山东大学学报(医学版), 2013, 51(2): 1-.
[6] 李艳菊,谭淑慧,夏春凤,张镛,杜怡峰,马国诏. NF-κB对Aβ1-42诱导神经元KATP亚基Kir6.2/SUR1表达的影响[J]. 山东大学学报(医学版), 2013, 51(10): 5-9.
[7] 张振伟1,蒋仲敏2. Mel-18 mRNA在食管鳞癌中的表达及其临床意义[J]. 山东大学学报(医学版), 2012, 50(2): 78-.
[8] 于春晓1,2,3,金童4,姜安丽5,赵家军1,2,3. 人同源盒基因NKX3.1内含子及5′上游10kb调控区功能的初步分析[J]. 山东大学学报(医学版), 2012, 50(12): 13-.
[9] 董玲芬1,邢毅2,孙灵芝3,李旭阳1,张潇丹1,李淑玲1. 头痛宁对偏头痛大鼠c-fos和c-jun基因表达的影响[J]. 山东大学学报(医学版), 2012, 50(11): 62-.
[10] 付庆喜1,马国诏2,车峰远1,高乃永1,高建新3,张镛2. 二氮嗪预处理对Aβ1-42作用神经元KATP各亚基表达的影响[J]. 山东大学学报(医学版), 2011, 49(9): 24-29.
[11] 孙士静,韩波,陈永芬,路康,席俊芳,孙瑾. Galectin-9在小鼠病毒性心肌炎中的表达及意义[J]. 山东大学学报(医学版), 2011, 49(8): 21-.
[12] 陈洁1,宋永红2,王淑荣2,韩振龙3,姜学兵1,李国盛1,郭春1,张利宁1,石永玉1. 人TIPE2基因启动子的鉴定及其表达调控区域的研究[J]. 山东大学学报(医学版), 2011, 49(7): 39-43.
[13] 谭淑慧1,任晓燕1,李景新2,姚伟2,马国诏1. Aβ1-42对胆碱能神经元KATP通道离子流影响的研究[J]. 山东大学学报(医学版), 2011, 49(3): 18-.
[14] 谭淑慧1,任晓燕1,李景新2,姚伟2,马国诏1. Aβ1-42对胆碱能神经元KATP通道离子流影响的研究[J]. 山东大学学报(医学版), 2011, 49(3): 18-.
[15] 孙锡波,韩玉香,韩涛,王雪,赵秀鹤,刘学伍,迟兆富. 二氮嗪对氯化锂-匹鲁卡品致痫大鼠海马神经元超微结构及自由基的影响[J]. 山东大学学报(医学版), 2011, 49(2): 19-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!