您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2014, Vol. 52 ›› Issue (8): 27-33.doi: 10.6040/j.issn.1671-7554.0.2014.060

• 基础医学 • 上一篇    下一篇

siRNA抑制转化生长因子-β1对小鼠黄韧带骨化的影响

张颖哲, 吴东进, 彭长亮, 李波翰, 宋扬, 张程, 赵杰, 李德全, 杨中雁, 刘鹏, 赵坤, 马胜忠, 高春正   

  1. 山东大学第二医院脊柱外科, 山东 济南 250033
  • 收稿日期:2014-02-06 修回日期:2014-06-10 出版日期:2014-08-10 发布日期:2014-08-10
  • 通讯作者: 高春正。E-mail:chunzhenggao@163.com E-mail:chunzhenggao@163.com
  • 基金资助:
    山东省自然科学基金(Y2007C046)

Effect of silencing TGF-β1 expression by small interfering RNA on ossification of the ligamentum flavum in mice

ZHANG Yingzhe, WU Dongjin, PENG Changliang, LI Bohan, SONG Yang, ZHANG Cheng, ZHAO Jie, LI Dequan, YANG Zhongyan, LIU Peng, ZHAO Kun, MA Shengzhong, GAO Chunzheng   

  1. Department of Spinal Surgery, Second Hospital of Shandong University, Jinan 250033, Shandong, China
  • Received:2014-02-06 Revised:2014-06-10 Online:2014-08-10 Published:2014-08-10

摘要: 目的 运用RNA干扰(RNAi)技术抑制转化生长因子-β1(TGF-β1)在小鼠黄韧带成纤维细胞中的表达,探讨其对脊柱黄韧带骨化的影响。方法 培养小鼠黄韧带成纤维细胞,经人重组骨形态发生蛋白-2(rhBMP-2)诱导骨化,对骨化成功的黄韧带细胞(成骨细胞)进行形态学观察,并对其进行碱性磷酸酶(ALP)染色及钙结节茜素红染色鉴定;构建靶向TGF-β1基因的小干扰RNA(siRNA)真核表达载体(siRNA-pSilencer2.0U6-TGFβ1)并转染成骨细胞,分为3组:真核表达载体转染后细胞为实验组,空载体转染后细胞为阴性对照组,未转染细胞为空白对照组。应用免疫荧光技术检测转染前后细胞中TGF-β1、BMP-2的表达;Rt-PCR检测TGF-β1 mRNA在细胞内表达变化;Western blotting检测TGF-β1和BMP-2蛋白在细胞内表达变化;酶联免疫吸附试验(ELISA)检测细胞中ALP、骨钙素(osteocalcin,OC)水平的变化。结果 经诱导骨化成功后,小鼠黄韧带细胞形态学观察可见细胞ALP染色、钙结节茜素红染色均呈阳性,具有典型成骨细胞生物学特征。构建的siRNA表达载体对细胞转染后,免疫荧光检测显示TGF-β1和BMP-2荧光强度下降;Rt-PCR检测显示实验组较阴性对照组和空白对照组TGF-β1 mRNA表达分别下降41.94%、47.82%,差异有统计学意义(P<0.01);Western blotting检测显示实验组较阴性对照组和空白对照组TGF-β1/β-action蛋白比值表达分别下降35.88%、44.75%,差异有统计学意义(P<0.01);BMP-2/β-action蛋白比值表达分别下降81.79%、86.06%,差异有统计学意义(P<0.01);ELISA检测显示实验组较阴性对照组和空白对照组ALP分别下降24.14%、32.30%,差异有统计学意义(P<0.01);OC分别下降17.01%、21.63%,差异有统计学意义(P<0.01)。结论 构建靶向TGF-β1基因的siRNA真核表达载体能够有效抑制成骨细胞中TGF-β1以及内源性BMP-2表达,达到抑制脊柱黄韧带骨化的目的。

关键词: 骨化, 小干扰RNA, 骨钙素, 碱性磷酸酶, 转化生长因子-β1, 骨形态发生蛋白-2

Abstract: Objective Transforming growth factor-β1 (TGF-β1) expression in fibroblasts of mice ligamentum flavum was inhibited by RNA interference (RNAi) technique, to investigate the effect of TGF-β1 on the ossification of ligamentum flavum. Methods Fibroblasts of mice ligamentum flavum were cultivated and ossification was induced with rhBMP-2 (recombinant human bone morphogenetic protein-2). After that, the osteoblasts were identified with morphologicalobservation, alkaline phosphatase staining and alizarin red staining of calcified nodules. Eukaryotic expression vector (siRNA-pSilencer2.0U6-TGFβ1) was constructed to transfect the osteoblasts, which were then divided into three groups. The experiment group was transfected with eukaryotic expression vector, the negative control group was transfected with vacant plasmid and the blank group was not treated. After that, the expressions of TGF-β1 and BMP-2 were detected by immunofluorescence technique before and after transfection; the expression change of TGF-β1 mRNA in osteoblasts was determined by Rt-PCR; the expression change of protein of TGF-β1 and BMP-2 was measured with Western blotting; the expression change of ALP and OC (osteocalcin) was assessed with enzyme linked immunosorbent assay (ELISA). Results After ossification had been induced successfully, ligamentum flavum cell morphological observation showed that alkaline phosphatase staining and alizarin redstaining of calcified nodules were both positive, and those cells had typical biological features of osteoblasts. After the osteoblasts were transfected by siRNA-pSilencer2.0U6-TGFβ1, immunofluorescence detection displayed decline in the fluorescence intensity of TGF-β1 and BMP-2. Compared with the negative control and bland control, Rt-PCR showed that the expression of the TGF-β1 mRNA in experiment group decreased significantly by 41.94% and 47.82%, respectively (P<0.01). Western blotting showed that the ratio of TGF-β1/β-action in experiment group decreased remarkably by 35.88% and 44.75%, respectively (P<0.01), and BMP-2/β-action decreased significantly by 81.79% and 86.06%, respectively (P<0.01). ELISA displayed that ALP in experiment group decreased notably by 24.14% and 32.30%, respectively (P<0.01), and OC decreased remarkably by 17.01% and 21.63%, respectively (P<0.01). Conclusion Eukaryotic expression vector (siRNA-pSilencer2.0U6-TGFβ1) could effectively inhibit the expression of TGF-β1 in osteoblasts and endogenous BMP-2, thus suppressing spinal ossification of ligamentum flavum.

Key words: Ossification, Bone morphogenetic protein-2, Osteocalcin, Alkaline phosphatase, Transforming growth factor-β1, Small interfering RNA

中图分类号: 

  • R686.5
[1] Sekiya I, Larson B L, Vuoristo J T, et al. Comparison of effect of BMP-2, -4 and -6 on in vitro cartilage formation of human adult stem cells from bone marrow stroma[J]. Cell Tissue Res, 2005, 320(2):269-276.
[2] Wyatt L E, Chung C Y, Carlsen B, et al. Bone morphogenetic protein-2 (BMP-2) and transforming growth factor-beta1 (TGF-beta1) alter connexin 43 phosphorylation in MC3T3-E1 Cells[J]. BMC Cell Biol, 2001, 2:14.
[3] 王哲, 王全平, 李明全, 等. 体外培养人黄韧带细胞系的建立及细胞学特性分析[J]. 现代康复杂志, 2001, 5(11):58-59.
[4] Miyamoto S, Takaoka K, Yonenobu K, et al. Ossification of the ligamentum flavum induced by bone morphogenetic protein[J]. J Bone Joint Surg Br, 1992, 74(2):279-283.
[5] Alpaslan C, Irie K, Takahashi K, et al. Long-term evaluation of recombinant human bone morphogenetic protein-2 induced bone formation with a biologic and synthetic delivery system[J]. Br J Oral Maxillofac Surg, 1996, 34(5):414-418.
[6] Kenley R, Marden L, Turek T, et al. Osseous regeneration in the rat calvarium using novel delivery systems for recombinant human bone morphogenetic protein-2(rhBMP-2)[J]. J Biomed Mater Res, 1994, 28(10):1139-1147.
[7] 鄂玲玲, 刘洪臣, 吴霞, 等. 改良大鼠下颌骨成骨细胞原代培养与鉴定[J]. 中华老年口腔医学杂志, 2007, 5(4):226-229.
[8] 卞晓琨, 司元全, 陆楠, 等. 免疫球蛋白样转录子2在胃癌细胞中的表达及临床意义[J]. 山东大学学报: 医学版, 2012, 50(1):118-121.
[9] Bessa P C, Casal M, Reis R L. Bone morphogenetic proteins in tissue engineering: the road from the laboratory to the clinic, part I (basic concepts)[J]. J Tissue Eng Regen Med, 2008, 2(1):1-13.
[10] Peck W A, Birge S J Jr, Fedak S A. Bone cells: biochemical and biological studies after enzymatic isolation[J]. Science, 1964, 146(3650):1476-1477.
[11] Sekiya T, Oda T, Matsuura K, et al. Transcriptional regulation of the TGF-beta pseudoreceptor BAMBI by TGF-beta signaling[J]. Biochem Biophys Res Commun, 2004, 320(3):680-684.
[12] Liu T, Gao Y, Sakamoto K, et al. BMP-2 promotes differentiation of osteoblasts and chondroblasts in Runx2-deficient cell lines[J]. J Cell Physiol, 2007, 211(3):728-735.
[13] Miura M, Chen X D, Allen M R, et al. A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells[J]. J clin Invest, 2004, 114(12):1704-1713.
[14] Michael B, Albro, Alexander D, et al. Shearing of synovial fluid activates latent TGF-β[J]. Osteoarthritis Cartilage, 2012, 20(11):1374-1382.
[15] Nakatani T, Marui T, Hitora T, et al. Mechanical stretching force promotes collagen synthesis by cultured cells from human ligamentum flavum via transforming growth factor-beta1[J]. J orthop Res, 2002, 20(6):1380-1386.
[16] Singhatanadgit W, Salih V, Olsen I. RNA interference of the BMPR-IB gene blocks BMP-2-induced osteogenic gene expression in human bone cells[J]. Cell Biol Int, 2008, 32(11):1362-1370.
[17] Moon S H, Park S R, Kim H, et al. Biologic modification of ligamentum flavum cells by marker gene transfer and recombinant human bone morphogenetic protein-2[J]. Spine, 2004, 29(9):960-965.
[18] Sriram S, Robinson P, Pi L, et al. Triple combination of siRNAs targeting TGFβ1, TGFβR2, and CTGF enhances reduction of collagen I and smooth muscle actin in corneal fibroblasts[J]. Invest Ophthalmol Vis Sci, 2013, 54(13):8214-8223.
[19] de Oliva M A, Maximiano W M, de Castro L M, et al. Treatment with a growth factor-protein mixture inhibits formation of mineralized nodules in osteogenic cell cultures grown on titanium[J]. J Histochem Cytochem, 2009, 57(3):265-276.
[20] Laino G, d'Aquino R, Graziano A, et al. A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB)[J]. J Bone Miner Res, 2005, 20(8):1394-1402.
[21] Tezval M, Tezval H, Dresing K, et al. Differentiation dependent expression of urocortin's mRNA and peptide in human osteoprogenitor cells: influence of BMP-2, TGF-beta-1 and dexamethasone[J]. J Mol Histol, 2009, 40(5-6):331-341.
[22] 张慧, 王贵超, 韩兴龙, 等. 去分化间充质干细胞成骨再分化潜能的实验研究[J]. 南京医科大学学报: 自然科学版, 2013, 33(8):1044-1048.
[1] 王庆石,陈允震,刘海春,武文亮,焦广俊,李晓峰,徐大霞. 髓核细胞分泌的炎症因子对后纵韧带成纤维细胞增殖与成骨能力的影响[J]. 山东大学学报(医学版), 2016, 54(6): 22-26.
[2] 王静, 高桂新, 万云焱, 刘庆华, 姚周虹, 林殿杰. 益气活血养阴解毒方对放射性肺损伤中TGF-β1、TNF-α表达的影响[J]. 山东大学学报(医学版), 2015, 53(7): 13-18.
[3] 赵旭, 崔敏, 于灵芝, 张娜, 曹鲁宁. 1型糖尿病大鼠Runx2、Osterix表达变化及唑来膦酸的干预作用[J]. 山东大学学报(医学版), 2015, 53(3): 56-61.
[4] 李燕,尉蔚,吕树卿,田永杰. PARP-1对卵巢癌血管生成的影响[J]. 山东大学学报(医学版), 2014, 52(4): 97-101.
[5] 张锦航1,张鲁伟1,刘新农2,田军1. Db/db小鼠肾脏中Tribble3的表达及其与肾脏纤维化的关系[J]. 山东大学学报(医学版), 2014, 52(2): 38-43.
[6] 包丹丹,李平,褚宏尚,刘慧娟. 骨形态发生蛋白-2对神经干细胞增殖和分化的影响[J]. 山东大学学报(医学版), 2014, 52(1): 10-14.
[7] 韩晓娟1,马学强2,杜怡峰1. 海风藤提取物对Aβ寡聚体激活的小胶质细胞释放炎性因子的抑制作用[J]. 山东大学学报(医学版), 2013, 51(5): 6-10.
[8] 刘丹丹1,高聆2,赵家军1,韩文霞1. 健脾益肾、活血化瘀中药复方对高糖刺激下肾小球系膜细胞增殖的影响[J]. 山东大学学报(医学版), 2013, 51(5): 29-32.
[9] 刘娜,蔡可丽. Ang (1-7)及培哚普利对糖尿病视网膜TGF-β1表达的影响[J]. 山东大学学报(医学版), 2013, 51(5): 62-65.
[10] 迟蔚蔚1,高海燕2,高海东3. 转化生长因子β1诱导的跨膜蛋白参与乳腺癌发展的分子机制[J]. 山东大学学报(医学版), 2013, 51(4): 26-29.
[11] 徐慧1,王义国2,刘长虹2,刘倩2,杜娟3. HBV在HK-2细胞内的表达及对其转分化的影响[J]. 山东大学学报(医学版), 2013, 51(3): 15-20.
[12] 王玮1,李鲁杨2,孟晓慧1. 甘草酸二胺联合前列地尔对大鼠
肾间质纤维化的影响
[J]. 山东大学学报(医学版), 2012, 50(9): 29-.
[13] 韩艳鑫,丛雅琴,王志敏. 骨髓增生异常综合征患者骨髓间充质干细胞的免疫抑制作用[J]. 山东大学学报(医学版), 2012, 50(6): 97-.
[14] 王坤红1,王文奇2,相玉芬1,王义国2,刘长虹2,李双玲2,曹莉莉3. 下调SnoN基因表达对HepG2细胞增殖及凋亡的影响[J]. 山东大学学报(医学版), 2012, 50(4): 33-37.
[15] 缪玉娥,王珏,王潍博. 胃癌及其癌旁黏膜中维生素D受体的表达[J]. 山东大学学报(医学版), 2012, 50(2): 74-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!