JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES) ›› 2016, Vol. 54 ›› Issue (9): 87-91.doi: 10.6040/j.issn.1671-7554.0.2016.042

Previous Articles     Next Articles

Use of SIR model in evaluation of control measures for adults measles outbreak

LUO Cheng1, XU Qing2, SUN Lin3, ZHANG Tao1, LI Runzi1, LIU Yanxun1, XUE Fuzhong1, LI Xiujun1   

  1. 1. Department of Biostatics, School of Public Health, Shandong University, Jinan 250012, Shandong, China;
    2. Shandong Center for Disease Control and Prevention, Institute of Immunization Manage, Jinan 250014, Shandong, China;
    3. Institute for Financial Studies, Shandong University, Jinan 250100, Shandong, China
  • Received:2016-01-12 Online:2016-09-10 Published:2016-09-10

Abstract: Objective A susceptible-infectious-recovered(SIR)model was established to describe the process of measles outbreak, and to analyze the control effect of vaccination and optimal control strategy. Methods Under the special circumstances, we adopted Markov Chain Monte Carlo(MCMC)to estimate the parameters of the model based on the real infected numbers. We calculated the basic reproduction number(R0)and effective reproduction number(Rt)base on rational assumptions to analyze the control effect of vaccination. Results The effective contact rate β was 0.001 06, the recovery rate γ was 0.117 and R0 was 2.96. The percentage of patients could reduce by 90.6% if emergency vaccination was used the second day after outbreak. On the 26th day, Rt<1, and the disease would fade away even if there were no vaccination. Conclusion The SIR model is suitable for studying adults’ measles outbreak, and it is close to real situation in estimating parameters.

Key words: Mathematical models of infectious diseases, Measles, SIR Model, Basic Reproduction Number, Markov Chain Monte Carlo

CLC Number: 

  • R183.9
[1] 马超, 中国麻疹流行病学与消除麻疹免疫策略研究[D]. 北京: 中国疾病预防控制中心, 2014.
[2] 马超, 苏琪茹, 郝利新, 等. 中国2012~2013年麻疹流行病学特征与消除麻疹进展[J]. 中国疫苗和免疫, 2014, 20(3): 193-199. MA Chao, SU Qiru, HAO Lixin, et al. Measles epidemiology characteristics and progress toward measles elimination in China[J]. Chinese Journal of Vaccines and Immunization, 2014, 20(3): 193-199.
[3] Grassly NC, Fraser C. Mathematical models of infectious disease transmission[J]. Nat Rev Micro, 2008, 6(6): 477-487.
[4] Sood N, Wagner Z, Jaycocks A, et al. Test-and-treat in Los Angeles: a mathematical model of the effects of test-and-treat for the population of men who have sex with men in Los Angeles County[J]. Clin Infect Dis, 2013, 56(12): 1789-1796.
[5] 马知恩,周义仓,王稳地,等. 传染病动力学的数学建模与研究[M]. 北京: 科学出版社, 2006.
[6] Chowell G, Blumberg S, Simonsen L, et al. Synthesizing data and models for the spread of MERS-CoV, 2013: key role of index cases and hospital transmission[J]. Epidemics, 2014, 9: 40-51, doi:10.1016/j.epidem.2014.09.011.
[7] 张秀敏. 一起成人麻疹爆发调查及其控制效果评价[D]. 济南: 山东大学, 2006.
[8] 许青, 徐爱强, 宋立志, 等. 一起成人麻疹爆发调查及其流行因素分析[J]. 中国计划免疫, 2007, 13(5): 440-443. XU Qing, XU Aiqiang, SONG Lizhi, et al. Epidemiological analysis on measles outbreak among adults[J]. Chinese Journal of Vaccines and Immunization, 2007, 13(5): 440-443.
[9] Roberts MG, Tobias MI. Predicting and preventing measles epidemics in New Zealand: application of a mathematical model[J]. Epidemiol Infect, 2000, 124(2): 279-287.
[10] Hamborsky J, Kriger K,Wolfe C. Epidemiology and prevention of vaccine-preventable diseases[M]. Washington: Centers for Disease Control and Prevention, 2015.
[11] 史建国,葛玉蕾. 麻疹疫苗应急接种控制爆发流行的效果[J]. 中华疾病控制杂志, 2002, 6(2): 147-148. SHI Jianguo, GE Yulei. Analysis of the control effect on outbreak and epidemic of measle with measle vaccine emergency vaccination[J]. Chinese Journal of Disease Control & Prevention, 2002, 6(2): 147-148.
[12] Haario H, Laine M, Mira A, et al. DRAM: Efficient adaptive MCMC[J]. Statist Comput, 2006, 16(4): 339-354.
[13] Haario H, Saksman E,Tamminen J. An adaptive Metropolis algorithm[J]. Bernoulli, 2001, 7(2): 223-242.
[14] Bonacic Marinovic AA, Swaan C, Wichmann O, et al. Effectiveness and timing of vaccination during School measles outbreak[J]. Emerg Infect Dis, 2012, 18(9): 1405-1413.
[15] Appanna T, Aundhakar U. Parameter estimation of SIR epidemic model using MCMC methods[J]. Global J Pure Appl Math, 2016, 12(2): 1299-1306.
[16] Morton A, Finkenstädt BF. Discrete time modelling of disease incidence time series by using Markov chain Monte Carlo methods[J]. J Roy Statist Soc Ser C, 2005, 54(3): 575-594.
[17] Pandey A. Modelling dengue transmission and vaccination[D]. Clemson: Clemson University, 2014.
[18] Durrheim D, Crowcroft N, Strebel P. Measles — The epidemiology of elimination[J]. Vaccine, 2014, 32(51): 6880-6883.
[19] Fred B, Pauline D, Jianhong W. Mathematical epidemiology[M]. Heidelberg: Springer-Verlag, 2008.
[1] TANG Xiaomin, ZHANG Li, YE Xufang, REN Gang, ZUO Li. Nucleoprotein gene analysis of measles virus in Guizhou Province in 2013 [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(3): 70-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!