Journal of Shandong University (Health Sciences) ›› 2025, Vol. 63 ›› Issue (8): 69-78.doi: 10.6040/j.issn.1671-7554.0.2025.0119
• Clinical Research • Previous Articles
SHEN Lujia1,2, LU Tianwei3, GONG Weiming1,2, ZHAO Yansong1,2, WANG Shukang1,2, YUAN Zhongshang1,2
CLC Number:
| [1] Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 1990—2019: update from the GBD 2019 study[J]. J Am Coll Cardiol, 2020, 76(25): 2982-3021. [2] Collaboration ERF, Sarwar N, Gao P, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies[J]. Lancet, 2010, 375(9733): 2215-2222. [3] Birkeland KI, Bodegard J, Eriksson JW, et al. Heart failure and chronic kidney disease manifestation and mortality risk associations in type 2 diabetes: a large multinational cohort study[J]. Diabetes Obes Metab, 2020, 22(9): 1607-1618. [4] Maida CD, Daidone M, Pacinella G, et al. Diabetes and ischemic stroke: an old and new relationship an overview of the close interaction between these diseases[J]. Int J Mol Sci, 2022, 23(4): 2397. doi:10.3390/ijms23042397 [5] Jia RR, Wang Q, Huang HY, et al. Cardiovascular disease risk models and dementia or cognitive decline: a systematic review[J]. Front Aging Neurosci, 2023, 15: 1257367. doi:10.3389/fnagi.2023.1257367 [6] Khan SS, Matsushita K, Sang YY, et al. Development and validation of the American heart associations PREVENT equations[J]. Circulation, 2024, 149(6): 430-449. [7] Khan SS, Coresh J, Pencina MJ, et al. Novel prediction equations for absolute risk assessment of total cardiovascular disease incorporating cardiovascular-kidney-metabolic health: a scientific statement from the American heart association[J]. Circulation, 2023, 148(24): 1982-2004. [8] Dziopa K, Asselbergs FW, Gratton J, et al. Cardiovascular risk prediction in type 2 diabetes: a comparison of 22 risk scores in primary care settings[J]. Diabetologia, 2022, 65(4): 644-656. [9] McGarrah RW, Crown SB, Zhang GF, et al. Cardiovascular metabolomics[J]. Circ Res, 2018, 122(9): 1238-1258. [10] Xie RJ, Seum T, Sha S, et al. Improving 10-year cardiovascular risk prediction in patients with type 2 diabetes with metabolomics[J]. Cardiovasc Diabetol, 2025, 24(1): 18. doi:10.1186/s12933-025-02581-3 [11] Huang Z, Klaric L, Krasauskaite J, et al. Combining serum metabolomic profiles with traditional risk factors improves 10-year cardiovascular risk prediction in people with type 2 diabetes[J]. Eur J Prev Cardiol, 2023, 30(12): 1255-1262. [12] Sudlow C, Gallacher J, Allen N, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age[J]. PLoS Med, 2015, 12(3): e1001779. doi:10.1371/journal.pmed.1001779 [13] Ritchie SC, Surendran P, Karthikeyan S, et al. Quality control and removal of technical variation of NMR metabolic biomarker data in ~120, 000 UK Biobank participants[J]. Sci Data, 2023, 10(1): 64. doi:10.1038/s41597-023-01949-y [14] Inker LA, Eneanya ND, Coresh J, et al. New creatinine- and cystatin C-based equations to estimate GFR without race[J]. N Engl J Med, 2021, 385(19): 1737-1749. [15] Qiang YX, You J, He XY, et al. Plasma metabolic profiles predict future dementia and dementia subtypes: a prospective analysis of 274, 160 participants[J]. Alzheimers Res Ther, 2024, 16(1): 16. doi:10.1186/s13195-023-01379-3 [16] Zhang SY, Wang Z, Wang YJ, et al. A metabolomic profile of biological aging in 250, 341 individuals from the UK Biobank[J]. Nat Commun, 2024, 15(1): 8081. doi:10.1038/s41467-024-52310-9 [17] Julkunen H, Cichońska A, Tiainen M, et al. Atlas of plasma NMR biomarkers for health and disease in 118, 461 individuals from the UK Biobank[J]. Nat Commun, 2023, 14(1): 604. doi:10.1038/s41467-023-36231-7 [18] McGranaghan P, Saxena A, Rubens M, et al. Predictive value of metabolomic biomarkers for cardiovascular disease risk: a systematic review and meta-analysis[J]. Biomarkers, 2020, 25(2): 101-111. [19] American Diabetes Association Professional Practice Committee. 10. Cardiovascular disease and risk management: standards of care in diabetes-2024[J]. Diabetes Care, 2024, 47(Suppl 1): S179-S218. [20] SCORE2-Diabetes Working Group and the ESC Cardiovascular Risk Collaboration. SCORE2-diabetes: 10-year cardiovascular risk estimation in type 2 diabetes in Europe[J]. Eur Heart J, 2023, 44(28): 2544-2556. [21] Arques S. Human serum albumin in cardiovascular diseases[J]. Eur J Intern Med, 2018, 52: 8-12. doi:10.1016/j.ejim.2018.04.014 [22] Nelson JJ, Liao D, Sharrett AR, et al. Serum albumin level as a predictor of incident coronary heart disease: the Atherosclerosis Risk in Communities(ARIC)study[J]. Am J Epidemiol, 2000, 151(5): 468-477. [23] Gopal DM, Kalogeropoulos AP, Georgiopoulou VV, et al. Serum albumin concentration and heart failure risk The Health, Aging, and Body Composition Study[J]. Am Heart J, 2010, 160(2): 279-285. [24] Filippatos GS, Desai RV, Ahmed MI, et al. Hypoalbuminaemia and incident heart failure in older adults[J]. Eur J Heart Fail, 2011, 13(10): 1078-1086. [25] Xu WH, Dong CH, Rundek T, et al. Serum albumin levels are associated with cardioembolic and cryptogenic ischemic strokes: Northern Manhattan Study[J]. Stroke, 2014, 45(4): 973-978. [26] Visseren FLJ, Mach F, Smulders YM, et al. 2021 ESC guidelines on cardiovascular disease prevention in clinical practice: developed by the task force for cardiovascular disease prevention in clinical practice with representatives of the European Society of Cardiology and 12 medical societies with the special contribution of the European Association of Preventive Cardiology(EAPC)[J]. Rev Esp Cardiol(Engl Ed), 2022, 75(5): 429. doi:10.1016/j.rec.2022.04.003 [27] Matsushita K, Kaptoge S, Hageman SHJ, et al. Including measures of chronic kidney disease to improve cardiovascular risk prediction by SCORE2 and SCORE2-OP[J]. Eur J Prev Cardiol, 2023, 30(1): 8-16. [28] Camont L, John Chapman M, Kontush A. Biological activities of HDL subpopulations and their relevance to cardiovascular disease[J]. Trends Mol Med, 2011, 17(10): 594-603. [29] Bocher O, Singh A, Huang Y, et al. Disentangling the consequences of type 2 diabetes on targeted metabolite profiles using causal inference and interaction QTL analyses[J]. PLoS Genet, 2024, 20(12): e1011346. doi:10.1371/journal.pgen.1011346 [30] Teis A, Cediel G, Amigó N, et al. Particle size and cholesterol content of circulating HDL correlate with cardiovascular death in chronic heart failure[J]. Sci Rep, 2021, 11(1): 3141. doi:10.1038/s41598-021-82861-6 [31] Liu Y, Jia SD, Yuan DS, et al. Apolipoprotein B/A-I ratio predicts lesion severity and clinical outcomes in diabetic patients with acute coronary syndrome[J]. Circ J, 2020, 84(7): 1132-1139. [32] McQueen MJ, Hawken S, Wang XY, et al. Lipids, lipoproteins, and apolipoproteins as risk markers of myocardial infarction in 52 countries(the INTERHEART study): a case-control study[J]. Lancet, 2008, 372(9634): 224-233. [33] Walldius G, Jungner I, Holme I, et al. High apolipoprotein B, low apolipoprotein A-I, and improvement in the prediction of fatal myocardial infarction(AMORIS study): a prospective study[J]. Lancet, 2001, 358(9298): 2026-2033. [34] Fu C, Liu DB, Liu Q, et al. Revisiting an old relationship: the causal associations of the ApoB/ApoA1 ratio with cardiometabolic diseases and relative risk factors-a mendelian randomization analysis[J]. Cardiovasc Diabetol, 2024, 23(1): 51. doi:10.1186/s12933-024-02140-2 |
| [1] | XU Ning-Yu, WANG Lei, HAO En-Kui, SU Guo-Hai. Effects of atorvastatin given before acute PCI on inflammatory mediators and left ventricular function in STEMI [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2209, 47(6): 69-72. |
| [2] | Stereoscopic Electrocardiogram Professional Committee of Henan Biomedical Engineering Society, Electrocardiogram Professional Committee of China Medical Education Association, Electrocardiogram Professional Committee of Shandong Association of Traditional Chinese Medicine, Electrocardiogram Physiology and Pacing Specialized Branch of Qingdao Medical Association, Remote Cardiac Professional Committee of National Medical Technology Market Association. Expert consensus on standardization of diagnostic criteria of vectorcardiogram(2025) [J]. Journal of Shandong University (Health Sciences), 2025, 63(7): 1-10. |
| [3] | JIA Kui, LI Zhiguo, CHENG Cuiting, LI Zhijuan, LIU Ruiqing. Efficacy and mechanism of ginkgo leaf tablets combined with trimetazidine in the treatment of elderly patients with chronic heart failure [J]. Journal of Shandong University (Health Sciences), 2025, 63(6): 19-26. |
| [4] | WEN Xuelong, LIU Anhui, CHEN Jingwei, WU Mengting, YANG Min. A Meta-analysis of the timing of coronary artery bypass grafting surgery for acute non-ST myocardial infarction [J]. Journal of Shandong University (Health Sciences), 2025, 63(5): 60-70. |
| [5] | LI Jing, HAO Panpan. Association between the heart rate variation and the prognosis in patients with acute heart failure at hospital admission and discharge [J]. Journal of Shandong University (Health Sciences), 2025, 63(4): 75-82. |
| [6] | SONG Sihao, CHENG Chuanlong, LI Shufen, XI Rui, LIANG Kemeng, NI Zhisong, CUI Feng, LI Xiujun. Short-term effects of air pollution on the year of life lost due to ischemic stroke and the modifying effects of extreme temperature events in Zibo City [J]. Journal of Shandong University (Health Sciences), 2025, 63(2): 84-94. |
| [7] | ZHANG Botao, ZHANG Shuaijie, SUN Shuangshuang, YUAN Ying, HU Xifeng, JIA Xiaofeng, YU Yuanyuan, XUE Fuzhong. Development of the Bayesian network-based screening model for ischemic stroke [J]. Journal of Shandong University (Health Sciences), 2024, 62(11): 73-84. |
| [8] | LI Jinquan, GAO Meifang, YAN Fei, DONG Ming. Frequency and risk factors of muscle cramp in 136 cases of type 2 diabetes mellitus [J]. Journal of Shandong University (Health Sciences), 2023, 61(5): 20-24. |
| [9] | HAN Mei, MENG Weijing, TAO Zikun, YANG Xi, XU Yaqi, MU Huaxia, BU Weixiao, WANG Suzhen, SHI Fuyan. Causal mediation analysis with multiple-mediator of hypertension and depression between type 2 diabetes mellitus and cognitive function based on G-computation [J]. Journal of Shandong University (Health Sciences), 2023, 61(10): 101-108. |
| [10] | LIN Yang, YAN Haosen, CHEN Qi, CHEN Yuxi, WANG Jiu. Construction of intelligent auxiliary diagnostic model for acute myocardial infarction [J]. Journal of Shandong University (Health Sciences), 2023, 61(1): 86-93. |
| [11] | ZHANG Yufeng, XU Min, XING Xiuli, PANG Shuguang, HU Keqing. Epidemiological characteristics of 689 patients with non-ST-segment elevation myocardial infarction [J]. Journal of Shandong University (Health Sciences), 2022, 60(7): 118-122. |
| [12] | DONG Xue, ZHAO Xia, CHENG Zijie, HAN Yi. Pharmacoeconomic evaluation of levosimendan and milrinone in the treatment of 711 patients with severe heart failure complicated with renal injury [J]. Journal of Shandong University (Health Sciences), 2022, 60(4): 91-98. |
| [13] | GAO Yan, ZHU Qingying, LUAN Mingya, LIU Kewei. Effects of tolvaptan combined with dapagliflozin on myocardial fibrosis in rats with heart failure [J]. Journal of Shandong University (Health Sciences), 2022, 60(12): 13-18. |
| [14] | FAN Xiaoyan, WANG Yuangeng, CHEN Zetao. Network pharmacologic mechanism of Huangqi Guizhi Wuwu Decoction in treating heart failure [J]. Journal of Shandong University (Health Sciences), 2022, 60(11): 70-81. |
| [15] | LYU Li, JIANG Lu, CHEN Shihong, ZHUANG Xianghua, SONG Yuwen, WANG Dianhui, AN Wenjuan, LI Qian, PAN Zhe. Related factors of osteoporosis in 210 postmenopausal women with type 2 diabetes mellitus [J]. Journal of Shandong University (Health Sciences), 2021, 59(7): 19-25. |
|
||