Journal of Shandong University (Health Sciences) ›› 2023, Vol. 61 ›› Issue (3): 63-70.doi: 10.6040/j.issn.1671-7554.0.2022.1421

• 基础医学 • Previous Articles    

A study on the microstructure and properties of additively manufactured NiTi alloy scaffolds

ZHANG Bo1, GAO Na1, XI Rui2, WANG Xiebin2   

  1. 1. Shandong Institute of Medical Device and Pharmaceutical Packaging Inspection, NMPA Key Laboratory for Quality Evaluation of Medical Materials and Biological Protective Devices, Jinan 250101, Shandong, China;
    2. School of Materials Science and Engineering, Shandong University, Jinan 250061, Shandong, China
  • Published:2023-03-24

Abstract: Objective To explore the effects of process parameters and feature sizes on the microstructure and properties of NiTi alloy scaffolds fabricated with laser powder bed fusion(L-PBF), so as to provide reference for the fabrication of NiTi alloy orthopaedic implants. Methods The following two groups of NiTi alloy scaffolds with body-centered cubic structure were fabricated: (1) NiTi scaffolds fabricated with different laser scanning speeds of 500-1 000 mm/s, while the beam size was fixed at 200 μm, to investigate the effects of L-PBF process parameters; (2) NiTi scaffolds with different struct sizes of 150-500 μm fabricated with the same L-PBF process parameters, to investigate the size effects. The microstructure, phase transformation behavior and mechanical properties of NiTi scaffolds were examined with scanning electron microscope, differential scanning calorimeter and mechanical testing machine. Results The actual struct size, the martensite transformation temperatures, and the compression strength decreased with the increase of laser scanning speed, while the recoverable strain during cycling compression tests increased with the decrease of scanning speed. The martensite transformation temperatures increased with the increase of the strut size, indicating a clear size effect. Conclusion Both the process parameters and feature size can affect the microstructure and properties of the L-PBF fabricated NiTi scaffolds. Therefore, in order to fabricate NiTi orthopaedic implants with predictable properties, the featured size at different locations has to be considered to optimize the L-PBF process conditions.

Key words: Additive manufacturing, Laser powder bed fusion, NiTi alloy, Orthopedic implant, Size effect, Scaffolds

CLC Number: 

  • R687.1
[1] Otsuka K, Ren X. Physical metallurgy of Ti-Ni-based shape memory alloys[J]. Prog Mater Sci, 2005, 50(5): 511-678.
[2] 徐祖耀, 江伯鸿, 杨大智, 等. 形状记忆材料[M]. 上海: 上海交通大学出版社, 2000.
[3] Zheng YF, Zhang BB, Wang BL, et al. Introduction of antibacterial function into biomedical TiNi shape memory alloy by the addition of element Ag[J]. Acta Biomater, 2011, 7(6): 2758-2767.
[4] 李文娇, 马春宝, 赵丙辉, 等. 镍钛形状记忆合金植入物在骨科的应用[J]. 生物骨科材料与临床研究, 2022, 19(1): 89-91. LI Wenjiao, MA Chunbao, ZHAO Binghui, et al. Application of nickel-titanium shape-memory alloy implant in orthopedics[J]. Orthopaedic Biomechanics Materials and Clinical Study, 2022, 19(1): 89-91.
[5] Bartolomeu F, Costa MM, Alves N, et al. Additive manufacturing of NiTi-Ti6Al4V multi-material cellular structures targeting orthopedic implants[J]. Opt Lasers Eng, 2020, 134: 106208. doi: 10.1016/j.optlaseng.2020.106208.
[6] Oliveira JP, Miranda RM, Braz Fernandes FM. Welding and joining of NiTi shape memory alloys: a review[J]. Prog Mater Sci, 2017, 88: 412-466. doi: 10.1016/j.pmatsci.2017.04.008.
[7] Hassan MR, Mehrpouya M, Dawood S. Review of the maching difficulties of nickel-titanium based shape memory alloys[J]. Appl Mech Mater, 2014, 564: 533-537. doi: 10.4028/www.scientific.net/AMM.564.533.
[8] Wu JC, Mills A, Grant KD, et al. Fracture fixation using shape-memory(ninitol)staples[J]. Orthop Clin North Am, 2019, 50(3): 367-374.
[9] 梁豪君, 李瑞延, 刘贯聪, 等. 医用骨科假体植入物多孔结构设计的研究和临床应用现状[J]. 中国组织工程研究, 2017, 21(15): 2410-2417. LIANG Haojun, LI Ruiyan, LIU Guancong, et al. Design of the porous orthopedic implants: research and application status[J]. Chinese Journal of Tissue Engineering Research, 2017, 21(15): 2410-2417.
[10] Jing Z, Zhang T, Xiu P, et al. Functionalization of 3D-printed titanium alloy orthopedic implants: a literature review[J]. Biomed Mater, 2020, 15(5): 052003.
[11] 陈艺菲, 郑赛男, 阙林. 3D打印复合材料骨组织工程支架及其在颌面骨再生中的研究进展[J]. 山东医药, 2022, 62(25): 83-86.
[12] 庄皓翔, 费琦, 杨雍. 3D打印技术在颈椎手术中的应用进展[J]. 颈腰痛杂志, 2022, 43(5): 760-762. HUANG Haoxiang, FEI Qi, YANG Yong. Application progress of 3D printing technology in cervical spine surgery[J]. The Journal of Cervicodynia And Lumbodynia, 2022, 43(5): 760-762.
[13] DebRoy T, Wei HL, Zuback JS, et al. Additive manufacturing of metallic components-Process, structure and properties[J]. Prog Mater Sci, 2018, 92: 112-224. doi:10.1016/j.pmatsci.2017.10.001.
[14] Wang X, Yu J, Liu J, et al. Effect of process parameters on the phase transformation behavior and tensile properties of NiTi shape memory alloys fabricated by selective laser melting[J]. Addit Manuf, 2020, 36: 101545. doi: 10.1016/j.addma.2020.101545.
[15] Xiong Z, Li Z, Sun Z, et al. Selective laser melting of NiTi alloy with superior tensile property and shape memory effect[J]. J Mater Sci Technol, 2019, 35(10): 2238-2242.
[16] Xue L, Atli KC, Zhang C, et al. Laser powder bed fusion of defect-free NiTi shape memory alloy parts with superior tensile superelasticity[J]. Acta Mater, 2022, 229: 117781. doi:10.1016/j.actamat.2022.117781.
[17] Fu J, Li H, Song X, et al. Multi-scale defects in powder-based additively manufactured metals and alloys[J]. J Mater Sci Technol, 2022, 122: 165-199. doi: 10.1016/j.jmst.2022.02.015.
[18] 张晓刚, 李宗义, 刘艳, 等. 激光选区熔化纯铜成形件尺寸精度的研究[J]. 激光技术, 2017, 41(6): 852-857. ZHANG Xiaogang, LI Zongyi, LIU Yan, et al. Study on dimensional accuracy of pure copper forming parts by laser selective melting[J]. Laser Technology, 2017, 41(6): 852-857.
[19] Xue L, Atli KC, Picak S, et al. Controlling martensitic transformation characteristics in defect-free NiTi shape memory alloys fabricated using laser powder bed fusion and a process optimization framework[J]. Acta Mater, 2021, 215: 117017. doi: 10.1016/j.actamat.2021.117017.
[20] Zhang Q, Hao S, Liu Y, et al. The microstructure of a selective laser melting(SLM)-fabricated NiTi shape memory alloy with superior tensile property and shape memory recoverability[J]. Appl Mater Today, 2020, 19: 100547. doi: 10.1016/j.apmt.2019.100547.
[21] Cunningham R, Zhao C, Parab N, et al. Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging[J]. Science, 2019, 363: 849-852. doi: 10.1126/science.aav4687
[22] Wei M, Ding W, Vastola G, et al. Quantitative study on the dynamics of melt pool and keyhole and their controlling factors in metal laser melting[J]. Addit Manuf, 2022, 54: 102779. doi: 10.1016/j.addma.2022.102779.
[23] King W, Barth H, Castillo V, et al. Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing[J]. J Mater Sci Technol, 2014, 214(12): 2915-2925.
[24] Ye D, Li S, Misra R, et al. Ni-loss compensation and thermomechanical property recovery of 3D printed NiTi alloys by pre-coating Ni on NiTi powder[J]. Addit Manuf, 2021, 47: 102344. doi: 10.1016/j.addma.2021.102344.
[25] Frenzel J, George EP, Dlouhy A, et al. Influence of Ni on martensitic phase transformations in NiTi shape memory alloys[J]. Acta Mater, 2010, 58(9): 3444-3458.
[26] Elahinia M, Moghaddam NS, Andani MT, et al. Fabrication of NiTi through additive manufacturing: a review[J]. Prog Mater Sci, 2016, 83: 630-663. doi: 10.1016/j.pmatsci.2016.08.001.
[27] Nasab MH, Gastaldi D, Lecis NF, et al. On morphological surface features of the parts printed by selective laser melting(SLM)[J]. Addit Manuf, 2018, 24: 373-377. doi: 10.1016/j.addma.2018.10.011.
[28] Fan J, Zhang L, Wei S, et al. A review of additive manufacturing of metamaterials and developing trends[J]. Mater Today, 2021, 50: 303-328. doi: 10.1016/j.mattod.2021.04.019.
[29] Shahabad SI, Ali U, Zhang Z, et al. On the effect of thin-wall thickness on melt pool dimensions in laser powder-bed fusion of Hastelloy X: Numerical modeling and experimental validation[J]. J Manuf Process, 2022, 75: 435-449. doi: 10.1016/j.jmapro.2022.01.029.
[30] Promoppatum P, Taprachareon K, Chayasombat B, et al. Understanding size-dependent thermal, microstructural, mechanical behaviors of additively manufactured Ti-6Al-4V from experiments and thermo-metallurgical simulation[J]. J Manuf Process, 2022, 75: 1162-1174. doi: 10.1016/j.jmapro.2022.01.068.
[31] Khairallah SA, Anderson AT, Rubenchik A, et al. Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones[J]. Acta Mater, 2016, 108: 36-45. doi: 10.1016/j.actamat.2016.02.014.
[32] 边培莹, 尹恩怀. 选区激光熔化激光功率对316L不锈钢熔池形貌及残余应力的影响[J]. 激光与光电子学进展, 2020, 57(1): 137-143. BIAN Peiying, YIN Enhuai. Effect of laser power for metal selective laser melting on morphology of 316L stainless steel molten pool and residual stress[J]. Laser & Optoelectronics Progress, 2020, 57(1): 137-143.
[1] CHEN Lei, LIU Dongxiao, LI Kaiming, SONG Xinqiang, ZENG Xiansi, JIANG Lijie. Uniaxial-channel collagen scaffolds loaded with CBD-BDNF improves the recovery of rat spinal cord injury [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(5): 43-48.
[2] TAN Qi, LI Na, TAO Yunming, TANG Hao, WU Zhongshi. Layer-by-layer assembly delivered VEGF enhances biocompatibility of decellularized scaffolds [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(5): 23-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!