Journal of Shandong University (Health Sciences) ›› 2021, Vol. 59 ›› Issue (6): 16-24.doi: 10.6040/j.issn.1671-7554.0.2021.0295

Previous Articles     Next Articles

Research progress of oxidative stress regulating osteoporosis

LI Minqi1,2, DU Juan1,3, YANG Panpan1,2, KOU Yuying1,2, LIU Shanshan1,2   

  1. 1. Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan 250101, Shandong, China;
    2. Division of Basic Science of Stomatology, School and Hospital of Stomatology, Shandong University, Jinan 250101, Shandong, China;
    3. Department of Stomatology, Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
  • Published:2021-06-10

Abstract: Osteoporosis is a systemic metabolic disease with bone mass reduction, bone microstructure destruction and bone fragility increase, which leads to patients susceptibility to fracture. With the aging of population, osteoporosis has become an important health problem for middle-aged and elderly people. The pathogenesis of osteoporosis is multifaceted. Aging and the decline of organ function caused by aging are the main factors. So far, the “oxidative stress aging theory” is still the most well-established hypothesis of aging mechanism. This review will focus on oxidative stress and bone formation, oxidative stress and bone resorption, antioxidants and bone homeostasis maintenance, and review the related research progress of oxidative stress-induced osteoporosis.

Key words: Reactive oxygen species, Oxidative stress, Osteoporosis, Bone formation, Bone resorption

CLC Number: 

  • R574
[1] Atashi F, Modarressi A, Pepper MS. The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review [J]. Stem Cells Dev, 2015, 24(10): 1150-1163.
[2] Li Q, Gao Z, Chen Y, et al. The role of mitochondria in osteogenic, adipogenic and chondrogenic differentiation of mesenchymal stem cells [J]. Protein Cell, 2017, 8(6): 439-445.
[3] Tan J, Xu X, Tong Z, et al. Decreased osteogenesis of adult mesenchymal stem cells by reactive oxygen species under cyclic stretch: a possible mechanism of age related osteoporosis [J]. Bone Res, 2015, 3: 15003. doi: 10.1038/boneres.2015.3.
[4] Wang L, Zhao X, Wei BY, et al. Insulin improves osteogenesis of titanium implants under diabetic conditions by inhibiting reactive oxygen species overproduction via the PI3K-Akt pathway [J]. Biochimie, 2015, 108: 85-93. doi: 10.1016/j.biochi.2014.10.004.
[5] Nastase MV, Janicova A, Wygrecka M, et al. Signaling at the Crossroads: matrix-derived proteoglycan and reactive oxygen species signaling [J]. Antioxid Redox Signal, 2017, 27(12): 855-873.
[6] Shi C, Wu J, Yan Q, et al. Bone marrow ablation demonstrates that estrogen plays an important role in osteogenesis and bone turnover via an antioxidative mechanism [J]. Bone, 2015, 79: 94-104. doi: 10.1016/j.bone.2015.05.034.
[7] Gómez-Puerto MC, Verhagen LP, Braat AK, et al. Activation of autophagy by FOXO3 regulates redox homeostasis during osteogenic differentiation [J]. Autophagy, 2016, 12(10): 1804-1816.
[8] Wang Z, Yang X, Yang S, et al. Sodium fluoride suppress proliferation and induce apoptosis through decreased insulin-like growth factor-I expression and oxidative stress in primary cultured mouse osteoblasts [J]. Arch Toxicol, 2011, 85(11): 1407-1417.
[9] Chen CT, Shih YR, Kuo TK, et al. Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells [J]. Stem Cells, 2008, 26(4): 960-968.
[10] Zhang Y, Yang JH. Activation of the PI3K/Akt pathway by oxidative stress mediates high glucose-induced increase of adipogenic differentiation in primary rat osteoblasts [J]. J Cell Biochem, 2013, 114(11): 2595-2602.
[11] Kalyanaraman H, Schwaerzer G, Ramdani G, et al. Protein kinase G activation reverses oxidative stress and restores osteoblast function and bone formation in male mice with type 1 diabetes [J]. Diabetes, 2018, 67(4): 607-623.
[12] Wang YN, Jia TT, Feng Y, et al. Hyperlipidemia impairs osseointegration via the ROS/wnt/β-catenin pathway [J]. J Dent Res, 2021: 22034520983245. doi: 10.1177/0022034520983245.
[13] James AW. Review of signaling pathways governing MSC osteogenic and adipogenic differentiation [J]. Scientifica(Cairo), 2013, 2013: 684736. doi: 10.1155/2013/684736.
[14] O&apos, Donnell VB, Azzi A. High rates of extracellular superoxide generation by cultured human fibroblasts: involvement of a lipid-metabolizing enzyme [J]. Biochem J, 1996, 318(Pt 3): 805-812.
[15] Kim WK, Meliton V, Bourquard N, et al. Hedgehog signaling and osteogenic differentiation in multipotent bone marrow stromal cells are inhibited by oxidative stress [J]. J Cell Biochem, 2010, 111(5): 1199-1209.
[16] Zhang B, Xie QY, Quan Y, et al. Reactive oxygen species induce cell death via Akt signaling in rat osteoblast-like cell line ROS 17/2.8 [J]. Toxicol Ind Health, 2015, 31(12): 1236-1242.
[17] Wauquier F, Leotoing L, Coxam V, et al. Oxidative stress in bone remodelling and disease [J]. Trends Mol Med, 2009, 15(10): 468-477.
[18] Domazetovic V, Marcucci G, Iantomasi T, et al. Oxidative stress in bone remodeling: role of antioxidants [J]. Clin Cases Miner Bone Metab, 2017, 14(2): 209-216.
[19] Bellanti F, Matteo M, Rollo T, et al. Sex hormones modulate circulating antioxidant enzymes: impact of estrogen therapy [J]. Redox Biol, 2013, 1: 340-346. doi: 10.1016/j.redox.2013.05.003.
[20] Grassi F, Tell G, Robbie-Ryan M, et al. Oxidative stress causes bone loss in estrogen-deficient mice through enhanced bone marrow dendritic cell activation[J]. PNAS, 2007, 104(38): 15087-15092.
[21] Wang X, Chen B, Sun J, et al. Iron-induced oxidative stress stimulates osteoclast differentiation via NF-κB signaling pathway in mouse model [J]. Metabolism, 2018, 83: 167-176. doi: 10.1016/j.metabol.2018.01.005.
[22] Almeida M, Han L, Martin-Millan M, et al. Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids [J]. J Biol Chem, 2007, 282(37): 27285-27297.
[23] An Y, Zhang H, Wang C, et al. Activation of ROS/MAPKs/NF-κB/NLRP3 and inhibition of efferocytosis in osteoclast-mediated diabetic osteoporosis [J]. FASEB J, 2019, 33(11): 12515-12527.
[24] Henriksen K, Neutzsky-Wulff AV, Bonewald LF, et al. Local communication on and within bone controls bone remodeling [J]. Bone, 2009, 44(6): 1026-1033.
[25] Mulcahy LE, Taylor D, Lee TC, et al. RANKL and OPG activity is regulated by injury size in networks of osteocyte-like cells [J]. Bone, 2011, 48(2): 182-188.
[26] Romagnoli C, Marcucci G, Favilli F, et al. Role of GSH/GSSG redox couple in osteogenic activity and osteoclastogenic markers of human osteoblast-like SaOS-2 cells [J]. FEBS J, 2013, 280(3): 867-879.
[27] Filaire E, Toumi H. Reactive oxygen species and exercise on bone metabolism: friend or enemy? [J]. Joint Bone Spine, 2012, 79(4): 341-346.
[28] Chen JR, Shankar K, Nagarajan S, et al. Protective effects of estradiol on ethanol-induced bone loss involve inhibition of reactive oxygen species generation in osteoblasts and downstream activation of the extracellular signal-regulated kinase/signal transducer and activator of transcription 3/receptor activator of nuclear factor-kappaB ligand signaling cascade [J]. J Pharmacol Exp Ther, 2008, 324(1): 50-59.
[29] Qin D, Zhang H, Zhang H, et al. Anti-osteoporosis effects of osteoking via reducing reactive oxygen species [J]. J Ethnopharmacol, 2019, 244: 112045. doi: 10.1016/j.jep.2019.112045.
[30] Fontani F, Marcucci G, Iantomasi T, et al. Glutathione, N-acetylcysteine and lipoic acid down-regulate starvation-induced apoptosis, RANKL/OPG ratio and sclerostin in osteocytes: involvement of JNK and ERK1/2 signalling [J]. Calcif Tissue Int, 2015, 96(4): 335-346.
[31] Schreck R, Rieber P, Baeuerle PA. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1 [J]. EMBO J, 1991, 10(8): 2247-2258.
[32] Oliveira-Marques V, Marinho HS, Cyrne L, et al. Role of hydrogen peroxide in NF-kappaB activation: from inducer to modulator [J]. Antioxid Redox Signal, 2009, 11(9): 2223-2243.
[33] Sies H, Berndt C, Jones DP. Oxidative Stress [J]. Annu Rev Biochem, 2017, 86: 715-748. doi: 10.1146/annurev-biochem-061516-045037.
[34] Ghonime MG, Shamaa OR, Das S, et al. Inflammasome priming by lipopolysaccharide is dependent upon ERK signaling and proteasome function [J]. J Immunol, 2014, 192(8): 3881-3888.
[35] Ha H, Kwak HB, Lee SW, et al. Reactive oxygen species mediate RANK signaling in osteoclasts [J]. Exp Cell Res, 2004, 301(2): 119-127.
[36] Lee SY, Lee KS, Yi SH, et al. Acteoside suppresses RANKL-mediated osteoclastogenesis by inhibiting c-Fos induction and NF-κB pathway and attenuating ROS production [J]. PLoS One, 2013, 8(12): e80873.
[37] Callaway DA, Jiang JX. Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases [J]. J Bone Miner Metab, 2015, 33(4): 359-370.
[38] Decuypere JP, Monaco G, Missiaen L, et al. IP(3)receptors, mitochondria, and Ca signaling: implications for aging [J]. J Aging Res, 2011, 2011: 920178. doi: 10.4061/2011/920178.
[39] Kim MS, Yang YM, Son A, et al. RANKL-mediated reactive oxygen species pathway that induces long lasting Ca2+oscillations essential for osteoclastogenesis [J]. J Biol Chem, 2010, 285(10): 6913-6921.
[40] Almeida M, Porter RM. Sirtuins and FoxOs in osteoporosis and osteoarthritis [J]. Bone, 2019, 121: 284-292. doi: 10.1016/j.bone.2019.01.018.
[41] Tothova Z, Kollipara R, Huntly BJ, et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress [J]. Cell, 2007, 128(2): 325-339.
[42] de Keizer PL, Burgering BM, Dansen TB. Forkhead box o as a sensor, mediator, and regulator of redox signaling [J]. Antioxid Redox Signal, 2011, 14(6): 1093-1106.
[43] Zainabadi K, Liu CJ, Caldwell ALM, et al. SIRT1 is a positive regulator of in vivo bone mass and a therapeutic target for osteoporosis [J]. PLoS One, 2017,12(9): e0185236.
[44] Edwards JR, Perrien DS, Fleming N, et al. Silent information regulator(Sir)T1 inhibits NF-κB signaling to maintain normal skeletal remodeling [J]. J Bone Miner Res, 2013, 28(4): 960-969.
[45] Bartell SM, Kim HN, Ambrogini E, et al. FoxO proteins restrain osteoclastogenesis and bone resorption by attenuating H2O2 accumulation [J]. Nat Commun, 2014, 5: 3773. doi: 10.1038/ncomms4773.
[46] Thummuri D, Naidu VGM, Chaudhari P. Carnosic acid attenuates RANKL-induced oxidative stress and osteoclastogenesis via induction of Nrf2 and suppression of NF-κB and MAPK signalling [J]. J Mol Med(Berl), 2017, 95(10): 1065-1076.
[47] Kanzaki H, Shinohara F, Itohiya K, et al. RANKL induces Bach1 nuclear import and attenuates Nrf2-mediated antioxidant enzymes, thereby augmenting intracellular reactive oxygen species signaling and osteoclastogenesis in mice [J]. Faseb J, 2017, 31(2): 781-792.
[48] Chen Y, Sun J, Dou C, et al. Alliin Attenuated RANKL-Induced Osteoclastogenesis by Scavenging Reactive Oxygen Species through Inhibiting Nox1 [J]. Int J Mol Sci, 2016, 17(9): 1516.
[49] Gao Y, Ge W. The histone methyltransferase DOT1L inhibits osteoclastogenesis and protects against osteoporosis [J]. Cell Death Dis, 2018, 9(2): 33.
[50] Kim BJ, Ahn SH, Bae SJ, et al. Iron overload accelerates bone loss in healthy postmenopausal women and middle-aged men: a 3-year retrospective longitudinal study [J]. J Bone Miner Res, 2012, 27(11): 2279-2290.
[51] Chen B, Yan YL, Liu C, et al. Therapeutic effect of deferoxamine on iron overload-induced inhibition of osteogenesis in a zebrafish model [J]. Calcif Tissue Int, 2014, 94(3): 353-360.
[52] Chen D, Ye Z, Wang C, et al. Arctiin abrogates osteoclastogenesis and bone resorption via suppressing RANKL-induced ROS and NFATc1 activation [J]. Pharmacol Res, 2020, 159: 104944. doi: 10.1016/j.phrs.2020.104944.
[53] Sun X, Xie Z, Hu B, et al. The Nrf2 activator RTA-408 attenuates osteoclastogenesis by inhibiting STING dependent NF-κb signaling [J]. Redox Biol, 2020, 28: 101309. doi: 10.1016/j.redox.2019.101309.
[54] Chen K, Qiu P, Yuan Y, et al. Pseurotin A inhibits osteoclastogenesis and prevents ovariectomized-induced bone loss by suppressing reactive oxygen species [J]. Theranostics, 2019, 9(6): 1634-1650.
[55] Li DZ, Zhang QX, Dong XX, et al. Treatment with hydrogen molecules prevents RANKL-induced osteoclast differentiation associated with inhibition of ROS formation and inactivation of MAPK, AKT and NF-kappa B pathways in murine RAW264.7 cells [J]. J Bone Miner Metab, 2014, 32(5): 494-504.
[56] Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis [J]. Free Radic Biol Med, 2010, 48(6): 749-762.
[57] Romagnoli C, Marcucci G, Favilli F, et al. Role of GSH/GSSG redox couple in osteogenic activity and osteoclastogenic markers of human osteoblast-like SaOS-2 cells [J]. Febs J, 2013, 280(3): 867-879.
[58] Lean JM, Jagger CJ, Kirstein B, et al. Hydrogen peroxide is essential for estrogen-deficiency bone loss and osteoclast formation [J]. Endocrinology, 2005, 146(2): 728-735.
[59] Mainini G, Rotondi M, Di Nola K, et al. Oral supplementation with antioxidant agents containing alpha lipoic acid: effects on postmenopausal bone mass [J]. Clin Exp Obstet Gynecol, 2012, 39(4): 489-493.
[60] Sanders KM, Kotowicz MA, Nicholson GC. Potential role of the antioxidant N-acetylcysteine in slowing bone resorption in early post-menopausal women: a pilot study [J]. Transl Res, 2007, 150(4): 215.
[61] Polat B, Halici Z, Cadirci E, et al. The effect of alpha-lipoic acid in ovariectomy and inflammation-mediated osteoporosis on the skeletal status of rat bone [J]. Eur J Pharmacol, 2013, 718(1-3): 469-474.
[62] Ostman B, Michaëlsson K, Helmersson J, et al. Oxidative stress and bone mineral density in elderly men: antioxidant activity of alpha-tocopherol [J]. Free Radic Biol Med, 2009, 47(5): 668-673.
[63] Shuid AN, Mohamad S, Muhammad N, et al. Effects of α-tocopherol on the early phase of osteoporotic fracture healing [J]. J Orthop Res, 2011, 29(11): 1732-1738.
[64] Koh JM, Lee YS, Byun CH, et al. Alpha-lipoic acid suppresses osteoclastogenesis despite increasing the receptor activator of nuclear factor kappaB ligand/osteoprotegerin ratio in human bone marrow stromal cells [J]. J Endocrinol, 2005, 185(3): 401-413.
[65] Feng H, Li Z, Du J, et al. Dual function of peroxiredoxin I in lipopolysaccharide-induced osteoblast apoptosis via reactive oxygen species and the apoptosis signal-regulating kinase 1 signaling pathway [J]. Cell Death Discov, 2018, 4: 47. doi: 10.1038/s41420-018-0050-9.
[66] Du J, Feng W, Sun J, et al. Ovariectomy upregulated the expression of Peroxiredoxin 1 & 5 in osteoblasts of mice [J]. Sci Rep, 2016, 6: 35995. doi: 10.1038/srep35995.
[67] Xu GP, Li X, Zhu ZY, et al. Iron overload induces apoptosis and cytoprotective autophagy regulated by ROS generation in Mc3t3-E1 cells [J]. Biol Trace Elem Res, 2021: 1-12. doi: 10.1007/s12011-020-02508-x.
[68] Soares MPR, Silva DP, Uehara IA, et al. The use of apocynin inhibits osteoclastogenesis [J]. Cell Biol Int, 2019, 43(5): 466-475.
[69] Byun CH, Koh JM, Kim DK, et al. Alpha-lipoic acid inhibits TNF-alpha-induced apoptosis in human bone marrow stromal cells [J]. J Bone Miner Res, 2005, 20(7): 1125-1135.
[70] Jiang Y, Luo W, Wang B, et al. Resveratrol promotes osteogenesis via activating SIRT1/FoxO1 pathway in osteoporosis mice [J]. Life Sci, 2020, 246: 117422. doi: 10.1016/j.lfs.2020.117422.
[71] Kim EN, Kim GR, Yu JS, et al. Inhibitory Effect of(2R)-4-(4-hydroxyphenyl)-2-butanol 2-O-β-d-apiofuranosyl-(1→6)-β-d-glucopyranoside on RANKL-Induced Osteoclast Differentiation and ROS Generation in Macrophages [J]. Int J Mol Sci, 2020, 22(1): 222.
[72] Ferlazzo N, Andolina G, Cannata A, et al. Is Melatonin the Cornucopia of the 21st Century? [J]. Antioxidants(Basel), 2020, 9(11): 1088.
[73] Li X, Chen Y, Mao Y, et al. Curcumin protects osteoblasts from oxidative stress-induced dysfunction via GSK3β-Nrf2 signaling pathway [J]. Front Bioeng Biotechnol, 2020, 8: 625. doi: 10.3389/fbioe.2020.00625.
[74] Pinna A, Torki Baghbaderani M, Vigil Hernández V, et al. Nanoceria provides antioxidant and osteogenic properties to mesoporous silica nanoparticles for osteoporosis treatment [J]. Acta Biomater, 2021, 122: 365-376. doi: 10.1016/j.actbio.2020.12.029.
[75] Huang HT, Cheng TL, Lin SY, et al. Osteoprotective Roles of Green Tea Catechins [J]. Antioxidants(Basel), 2020, 9(11): 1136.
[76] Devareddy L, Hooshmand S, Collins JK, et al. Blueberry prevents bone loss in ovariectomized rat model of postmenopausal osteoporosis [J]. J Nutr Biochem, 2008, 19(10): 694-699.
[77] Zhang J, Lazarenko OP, Blackburn ML, et al. Blueberry consumption prevents loss of collagen in bone matrix and inhibits senescence pathways in osteoblastic cells [J]. Age(Dordr), 2013, 35(3): 807-820.
[78] Jin H, Du J, Ren H, et al. Astragaloside IV protects against iron loading-induced abnormal differentiation of bone marrow mesenchymal stem cells(BMSCs)[J]. FEBS Open Bio, 2021, 11(4): 1223-1236.
[79] Chen L, Hu SL, Xie J, et al. Proanthocyanidins-mediated nrf2 activation ameliorates glucocorticoid-induced oxidative stress and mitochondrial dysfunction in osteoblasts [J]. Oxid Med Cell Longev, 2020, 2020: 9102012. doi: 10.1155/2020/9102012.
[80] Li M, Hao L, Li L, et al. Cinnamtannin B-1 prevents ovariectomy-induced osteoporosis via attenuating osteoclastogenesis and ROS generation [J]. Front Pharmacol, 2020, 11: 1023. doi: 10.3389/fphar.2020.01023.
[81] Rhee SG, Kang SW, Chang TS, et al. Peroxiredoxin, a novel family of peroxidases [J]. IUBMB Life, 2001, 52(1/2): 35-41.
[82] Rhee SG, Woo HA. Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H2O2, and protein chaperones [J]. Antioxid Redox Signal, 2011, 15(3): 781-794.
[83] Hall A, Nelson K, Poole LB, et al. Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins [J]. Antioxid Redox Signal, 2011, 15(3): 795-815.
[84] Yang KS, Kang SW, Woo HA, et al. Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid [J]. J Biol Chem, 2002, 277(41): 38029-38036.
[85] Park MH, Jo M, Kim YR, et al. Roles of peroxiredoxins in cancer, neurodegenerative diseases and inflammatory diseases [J]. Pharmacol Ther, 2016, 163: 1-23. doi: 10.1016/j.pharmthera.2016.03.018.
[86] Jeong SJ, Kim S, Park JG, et al. Prdx1(peroxiredoxin 1)deficiency reduces cholesterol efflux via impaired macrophage lipophagic flux [J]. Autophagy, 2018, 14(1): 120-133.
[87] Bolduc JA, Collins JA, Loeser RF. Reactive oxygen species, aging and articular cartilage homeostasis [J]. Free Radic Biol Med, 2019, 132: 73-82. doi: 10.1016/j.freeradbiomed.2018.08.038.
[88] Román F, Urra C, Porras O, et al. Real-time H2O2 measurements in bone marrow mesenchymal stem cells(MSCs)show increased antioxidant capacity in cells from osteoporotic women [J]. J Cell Biochem, 2017, 118(3): 585-593.
[89] Park KR, Yun HM, Yeo IJ, et al. Peroxiredoxin 6 inhibits osteogenic differentiation and bone formation through human dental pulp stem cells and induces delayed bone development [J]. Antioxid Redox Signal, 2019, 30(17): 1969-1982.
[90] Du J, Feng W, Sun J, et al. Ovariectomy upregulated the expression of Peroxiredoxin 1 & 5 in osteoblasts of mice [J]. Sci Rep, 2016, 6: 35995. doi: 10.1038/srep35995.
[91] Feng H, Li Z, Du J, et al. Dual function of peroxiredoxin I in lipopolysaccharide-induced osteoblast apoptosis via reactive oxygen species and the apoptosis signal-regulating kinase 1 signaling pathway [J]. Cell Death Discov, 2018, 4: 47. doi: 10.1038/s41420-018-0050-9.
[1] CHEN Shihong, JIANG Dongqing, ZHUANG Xianghua, LI Xiaobo, PAN Zhe, SUN Aili, LOU Nengjun, WANG Dianhui, DU Jiaojiao, SONG Yuwen. Primary biliary cholangitis with bone pain as the main manifestation: a case report [J]. Journal of Shandong University (Health Sciences), 2022, 60(8): 98-102.
[2] WU Hong, ZHANG Zhengduo, TANG Yanjin, QI Shaojun, GAO Xibao. Potential intervention effects of 5-methyltetrahydrofolate on atherosclerosis in rats [J]. Journal of Shandong University (Health Sciences), 2022, 60(8): 6-13.
[3] BAO Shuqing, YANG Mingyue, LIU Duanrui, WANG Yunshan, JIA Yanfei. Role of NOX4 in ROS induction by Helicobacter pylori in gastric cancer cells [J]. Journal of Shandong University (Health Sciences), 2022, 60(6): 19-25.
[4] LIU Min, ZHANG Yuchao, MA Xiaoli, LIU Xinyu, SUN Lu, ZUO Dan, LIU Yuantao. Effects of orphan nuclear receptor NR4A1 on H2O2 induced injury of mouse renal podocytes [J]. Journal of Shandong University (Health Sciences), 2022, 60(5): 16-21.
[5] HU Na, SUN Miao, XING Shasha, XU Danxia, HAI Xiaoming, MA Ling, YANG Li, MIAN Yuchen, HE Rui, CHEN Dongmei, MA Huiming. Evening primrose oil resists oxidative stress in the ovaries of rats with polycystic ovary syndrome [J]. Journal of Shandong University (Health Sciences), 2022, 60(5): 22-30.
[6] HUANG Huining, DU Juanjuan, SUN Yi, HOU Yinglong, GAO Mei. Hydrogen sulfide alleviates acute obstructive sleep apnea-induced atrial fibrillation by regulating oxidative stress through glutaredoxin-1 [J]. Journal of Shandong University (Health Sciences), 2022, 60(1): 1-5.
[7] LYU Li, JIANG Lu, CHEN Shihong, ZHUANG Xianghua, SONG Yuwen, WANG Dianhui, AN Wenjuan, LI Qian, PAN Zhe. Related factors of osteoporosis in 210 postmenopausal women with type 2 diabetes mellitus [J]. Journal of Shandong University (Health Sciences), 2021, 59(7): 19-25.
[8] Ping LIU,Yuwen SONG,Ping WANG,Guangwei TIAN,Fengjie ZHENG,Li LYU,Jiaojiao DU,Jing ZHANG,Xianghua ZHUANG,Shihong CHEN. Correlation between vitamin D deficiency and depression in patients with type 2 diabetes mellitus [J]. Journal of Shandong University (Health Sciences), 2021, 59(6): 51-56,102.
[9] LUO Xianghang, ZHOU Ruoyu. Advances on the etiology and pathogenesis of osteoporosis [J]. Journal of Shandong University (Health Sciences), 2021, 59(6): 10-14.
[10] CHENG Xiaoguang, LU Yanhui. Osteoporosis in men: a chronically overlooked problem [J]. Journal of Shandong University (Health Sciences), 2021, 59(6): 5-9.
[11] Shihong CHEN. Progress in glucocorticoid-induced osteoporosis [J]. Journal of Shandong University (Health Sciences), 2021, 59(6): 33-37.
[12] XING Xiaoping. Diagnosis and management of primary osteoporosis [J]. Journal of Shandong University (Health Sciences), 2021, 59(6): 1-4.
[13] Jiaojiao DU,Xianghua ZHUANG,Shihong CHEN,Xuemeng WANG,Dongqing JIANG,Fei WU,Xiaolin HAN,Mengyu HUA,Yuwen SONG. Changes of serum IL-31 and IL-33 levels in postmenopausal patients with osteoporosis [J]. Journal of Shandong University (Health Sciences), 2021, 59(6): 45-50.
[14] LIU Shudan, ZHANG Feiyan, GUO Songlin, LIANG Xueyun, CHEN Dongmei. Oxymatrine ameliorates oxidative stress injury of HaCaT cells induced by hypoxia ischemia [J]. Journal of Shandong University (Health Sciences), 2021, 59(3): 26-34.
[15] XIANG Lin, CHEN Lamei, WANG Jingwen, LI Haiming, LI Haoyu, WANG Ju, FAN Yuchen, WANG Kai. Effects of drinking Yin-Jiu-Shu on liver metabolizing enzymes in 30 healthy volunteers [J]. Journal of Shandong University (Health Sciences), 2021, 59(3): 81-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Jie,LI Zhen-hua,SUN Jin-hao,BAO Li-hua,LIU Yue-peng. Protective effects of the invariable magnetic field on oxidative injured Schwann cells[J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2007, 45(3): 229 -232 .
[2] . [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2007, 45(10): 995 .
[3] JIANG Hong-ju,LI Run-zhi, WANG Ying,XU Dong-mei,ZHANG Mei,ZHANG Yun,LI Ji-fu. Relationship between the plasma level of matrix metalloproteinase-9 and structural characteristics of plaques and percutaneous coronary intervention [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2008, 46(10): 966 -970 .
[4] ZHENG Min,HAO Yue-wei,LIU Xue-ping,ZHAO Ting-ting. Relationship between the HPA-2 and Kozak sequence polymorphism of platelet membrane glycoprotein and cerebral infarction[J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2008, 46(3): 292 -295 .
[5] . [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2008, 46(8): 828 -830 .
[6] . [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2009, 47(9): 5 -6 .
[7] NIU Rui,LIU Bo,SHAO Ming-ju,WANG Wei. mRNA expression of lunx in regional lymph nodes of non-small cell lung cancer and its correlation with prognosis[J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2007, 45(9): 884 -885 .
[8] WANG Shu-qin,QI Feng,WU Jian-bo,SUN Bao-zhu. Effect of calcium in ropivacaine-induced smooth muscle contraction of the aorta in rats in vitro[J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2008, 46(8): 773 -776 .
[9] TENG Xue-ren,ZHAO Yong-sheng,HU Guang-liang,ZHOU Lun,LI Jian-min. Characteristics of microcosmic changes following tendon allograft transplantation preserved by two methods under light microscopy and transmission electron microscopy[J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2008, 46(10): 945 -950 .
[10] JIAO Fang-fang,LIU Shi-qing,LI Fei,LI Chang-sheng,WANG Qin,SUN Qing,LU Wei. Therapeutic effects of Huayulifei on expression of SMAD7 and TGF-β in rats with bleomycin-induced pulmonary fibrosis[J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2007, 45(10): 1054 -1058 .