Journal of Shandong University (Health Sciences) ›› 2020, Vol. 58 ›› Issue (1): 6-12.doi: 10.6040/j.issn.1671-7554.0.2019.940

Previous Articles    

A metabonomic study on mTOR pathway regulating radiosensitivity of ECA109 cells

ZHANG Hairong, ZHANG Xiaohong, WANG Chaoqun   

  1. Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
  • Published:2022-09-27

Abstract: Objective To explore the effects of mammalian target of rapamycin(mTOR)pathway on radiotherapy-induced autophagy, to search for the small molecular metabolites related to radiosensitivity and their regulatory pathways. Methods ECA109 cells were divided into three groups: control group, radiotherapy group and radiotherapy plus MHY1485 group. The mTOR, Beclin-1 and LC3-II/I were detected with Western blotting, and cell viability 24h after treatment was determined with CCK8 method. The cell culture medium of radiotherapy group(n=6)and radiotherapy plus MHY1485 group(n=6)were collected and analyzed with liquid chromatography-mass spectrometry(LC-MS). The differences in metabolites between the two groups were analyzed with PLS-DA and OPLS-DA. Results Radiotherapy induced autophagy by inhibiting mTOR pathway, and MHY1485 activated mTOR to antagonize autophagy and inhibited proliferation of tumor cells. Compared with the radiotherapy group, the radiotherapy plus MHY1485 group had upregulated expressions of betaine aldehyde, creatine, stearic acid, ornithine, L-cystine and L-proline(P<0.001), but downregulated expressions of citrulline, niacin, glucose 6-phosphate, L-valine, thymine, betaine, L-arginine, L-leucine, L-tryptophan and pyridoxine(P<0.001). Conclusion Radiotherapy can inhibit mTOR-induced autophagy, which 山 东 大 学 学 报 (医 学 版)58卷1期 -章海容,等. 哺乳动物雷帕霉素靶蛋白通路调控ECA109细胞放疗敏感性的代谢组学 \=-can be resisted by the activation of mTOR, so as to inhibit the proliferation of ECA109 cells and enhance the radiosensitivity. As metabolites in the radiotherapy group are different from those in radiotherapy plus MHY1485 group, metabolites and their pathways related to radiosensitivity can be detected with LC-MS technology.

Key words: Mammalian target of rapamycin, Esophageal cancer, Radiosensitivity, Metabonomics

CLC Number: 

  • R310.31
[1] Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132.
[2] Cuperlovic-Culf M, Culf AS, Touaibia M, et al. Targeting the latest hallmark of cancer: another attempt at ‘magic bullet’ drugs targeting cancers' metabolic phenotype[J]. Future Oncol, 2012, 8(10): 1315-1330.
[3] Grass GD, Cooper SL, Armeson K, et al. Cervical esophageal cancer: a population-based study [J]. Head Neck, 2015, 37(6): 808-814.
[4] 陆建国. mTOR信号通路与肿瘤研究进展[J]. 现代医药卫生, 2015, 31(2): 199-202.
[5] 马志恒, 蒋海存, 陈建新, 等. mTOR信号通路与胃癌的相关性研究[J]. 国际消化病杂志, 2016, 36(4): 256-258.
[6] Nicholson JK, Connelly J, Lindon JC. Metabonomics: a platform for studying drug toxicity and gene function[J]. Nat Rev Drug Discov, 2002, 1(2): 153-161.
[7] 麦麦提江·阿布杜克热木, 玛依努尔·艾力,郑超. 食管癌患者放化疗前后代谢组学指标改变的观察[J]. 现代肿瘤医学, 2017, 25(18): 2911-2914.
[8] Tokunaga M, Kami K, Ozawa S, et al. Metabolome analysis of esophageal cancer tissues using capillary electrophoresis-time-of-flight mass spectrometry [J]. Int J Oncol, 2018, 52(6): 1947-1958.
[9] Lin L, Huang Z, Gao Y, et al. LC-MS based serum metabonomic analysis for renal cell carcinoma diagnosis, staging, and biomarker discovery [J]. J Proteome Res, 2011, 10(3): 1396-1405.
[10] Sreekumar A, Poisson LM, Rajendiran TM, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression [J]. Nature, 2009, 457(7231): 910-914.
[11] Gika HG, Theodoridis GA, Plumb RS. Current practice of liquid chromatography-mass spectrometry in metabolomics and metabonomics [J]. J Pharm Biomed Anal, 2014, 87(1): 12-25.
[12] 王浙宁, 马长春, 梁家豪, 等. 基于1H-NMR及模式识别的大肠癌尿液代谢组学研究[J]. 实用放射学杂志, 2018, 34(6): 126-130. WANG Zhening, MA Changchun, LIANG Jiahao, et al. Urine metabonomics of colorectal cancer based on 1H-NMR and pattern recognition[J]. Pract Radiol, 2018, 34(6): 126-130.
[13] Babcock JT. Rheb mTOR activation and regulation in cancer: novel treatment strategies beyond rapamycin [J]. Curr Drug Targets, 2011, 12(8): 1223-1231.
[14] Nam HY, Han MW, Chang HW, et al. Prolonged autophagy by mTOR inhibitor leads radioresistant cancer cells into senescence[J]. Autophagy, 2013, 9(10): 1631-1632.
[15] Apel A, Herr I, Schwarz H, et al. Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy [J]. Cancer Res, 2008, 68(5): 1485-1494.
[16] Lomonaco SL, Finniss S, Xiang C, et al. The induction of autophagy by gamma-radiation contributes to the radioresistance of glioma stem cells [J]. Int J Cancer, 2009, 125(3): 717-722.
[17] Lu C, Xie C. Radiation-induced autophagy promotes esophageal squamous cell carcinoma cell survival via the LKB1 pathway[J]. Oncol Rep, 2016, 35(6): 3559-3565.
[18] Carew JS, Kelly KR, Nawrocki ST. Autophagy as a target for cancer therapy: new developments [J]. Cancer Manag Res, 2012, 4(1): 357-365.
[19] Tseng HC, Liu WS, Tyan YS, et al. Sensitizing effect of 3-methyladenine on radiation-induced cytotoxicity in radio-resistant HepG2 cells in vitro and in tumor xenografts [J]. Chem Biol Interact, 2011, 192(3): 201-208.
[20] Zhang T, Wu X, Ke C, et al. Identification of potential biomarkers for ovarian cancer by urinary metabolomic profiling [J]. J Proteome Res, 2013, 12(1): 505-512.
[21] Chantranupong L, Scaria SM, Saxton RA, et al. The CASTOR proteins are arginine sensors for the mTORC1 pathway [J]. Cell, 2016, 165(1): 153-164.
[22] Sidney M. Morris J. Arginine metabolism: boundaries of our knowledge [J]. Nutr, 2007, 137(Suppl2): 1602-1609.
[23] Fujigaki S, Nishiumi S, Kobayashi T, et al. Identification of serum biomarkers of chemoradiosensitivity in esophageal cancer via the targeted metabolomics approach [J]. Biomark Med, 2018, 12(3): 827-840.
[24] Qiu F, Huang J, Sui M. Targeting arginine metabolism pathway to treat arginine-dependent cancers [J]. Cancer Lett, 2015, 364(1): 1-7.
[25] Phillips MM, Sheaff MT, Szlosarek PW. Targeting arginine-dependent cancers with arginine-degrading enzymes: opportunities and challenges [J]. Cancer Res Treat, 2013, 45(4): 251-262.
[26] Stelter L, Evans M, Jungbluth AA, et al. Imaging of tumor vascularization using fluorescence molecular tomography to monitor arginine deiminase treatment in melanoma [J]. Mol Imaging, 2013, 12(11): 67-73.
[27] Park IS, Kang SW, Shin YJ, et al. Arginine deiminase: a potential inhibitor of angiogenesis and tumour growth [J]. Br J Cancer, 2003, 89(5): 907-914.
[28] Feun LG, Kuo MT, Savaraj N. Arginine deprivation in cancer therapy [J]. Curr Opin Clin Nutr Metab Care, 2015, 18(1): 78-82.
[29] Pavlyk I, Rzhepetskyy Y, Jagielski AK, et al. Arginine deprivation affects glioblastoma cell adhesion, invasiveness and actin cytoskeleton organization by impairment of beta-actin arginylation [J]. Amino Acids, 2015, 47(1): 199-212.
[30] Poillet-Perez L, Xie X, Zhan L, et al. Autophagy maintains tumour growth through circulating arginine [J]. Nature, 2018, 563(7732): 569-573.
[31] 管清梅, 李芳, 王芳芳. 脯氨酸-水二聚体分子间相互作用的理论研究[J]. 阜阳师范学院学报(自然科学版), 2014, 31(3): 17-19.
[32] Pandhare J, Cooper SK, Phang JM. Proline oxidase, a proapoptotic gene, is induced by troglitazone: evidence for both peroxisome proliferator-activated receptor gamma-dependent and-independent mechanisms [J]. J Biol Chem, 2006, 281(4): 2044-2052.
[33] Loayza-Puch F, Rooijers K, Buil LC, et al. Tumour-specific proline vulnerability uncovered by differential ribosome codon reading [J]. Nature, 2016, 530(7591): 490-494.
[34] Prior FG. Theoretical involvement of vitamin B6 in tumour initiation [J]. Me Hypotheses,1985, 16(4): 421-428.
[1] WANG Yanlig, FENG Ye, ZHOU Xiugeng, YANG Yue, WU Nan, FANG Yu, YAN Shi, LI Shaolei, LYU Chao, HAN Chao, DU Songtao. Preliminary observation of perioperative whey protein supplementation for the prevention of postoperative complications in 33 patients with esophageal cancer [J]. Journal of Shandong University (Health Sciences), 2022, 60(3): 64-70.
[2] ZHANG Xiaohong, ZHOU Yun, DU Qiuying, REN Huixin, WANG Chaoqun. Atg7-siRNA interferes with radiosensitivity of esophageal cancer ECA109 cells by regulating arginine circulation [J]. Journal of Shandong University (Health Sciences), 2021, 59(4): 28-34.
[3] LI Wenqing, YE Lan, JIANG Yuhua. CDK7 inhibitor THZ1 increases the radiosensitivity of human glioma cell line U251 [J]. Journal of Shandong University (Health Sciences), 2021, 59(1): 8-13.
[4] LYU Longfei, LI Lin, LI Shuhai, QI Lei, LU Ming, CHENG Chuanle, TIAN Hui. Application of laparoscopic fine needle catheter jejunostomy in minimally invasive McKeown resection of esophageal cancer [J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 77-81.
[5] LI Changda, SHI Yongjun, LIN Yanliang. Effects of 27-hydroxycholesterol and cholesterol on the proliferation of esophageal squamous cell carcinoma in nude mice and human esophageal carcinoma cells(ECA109) [J]. Journal of Shandong University (Health Sciences), 2020, 58(11): 45-52.
[6] MAO Shaowei, LU Guoliang, LI Liang, XIA Qinghua. Valproic acid augments the anti-tumor potential of metformin in PC-3 cells [J]. Journal of Shandong University (Health Sciences), 2018, 56(3): 48-53.
[7] HAN Fuyan, CHENG Shiqing, WANG Zhaobao, JU Ying. Clinical significance of preoperative red blood cell distribution width in peripheral blood of patients with esophageal cancer [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(7): 67-72.
[8] ZHANG Mingming, AN Yonghui, HAN Caili, ZHANG Yingqi, MA Ming, LI Na, ZOU Changpeng. Clinical efficacy of combined cellular immunotherapy and photodynamic therapy for advanced esophageal cancer [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2016, 54(1): 38-41.
[9] NIU Jun-jie1, WANG Han1,2, XU Ying1, ZHOU Yong1, JIANG Yu-hua1. Valproate acid sodium enhancing radiation sensitivity of  rat C6 glioma cells in vitro  [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2013, 51(06): 15-19.
[10] LI Xiao-hong1, HU Li-kuan1,2, WANG Cui-hong1, DU Yuan-na1. Radiosensitivity enhancement of the human lung adenocarcinoma
cell line A549 by Glu-GNPs
[J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2012, 50(3): 29-.
[11] HEN Yan1, LI Xiu-mei2, WANG Hong-jiang3, PANG Zuo-liang3, LI Hui4, JIANG Xiao-fang4, MA Li-li1, CHEN Hong-ming5, LI Hui-wu4. Expression of c-myc in esophageal cancer in the Kazak population in Xinjiang,  China:implications for regulatory mechanisms [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2011, 49(11): 135-.
[12] LAI Zhen-nan, LIANG Rong, XIE Zhong, HUANG Jie. Radio-sensitization effect of paclitaxel versus sodium glycididazole for local advanced nasopharyngeal carcinoma [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2011, 49(11): 131-134.
[13] JIANG Hai-qiang1, LI Yun-lun2, XIE Jun2. Plasma metabonomic study on hypertension by high performance liquid chromatography coupled with time of flight mass spectrometry [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2011, 49(10): 150-.
[14] ZHANG Ping1, LIU Fang2, LUAN Li1, MA Daoxin1, WANG Jianbo1, TAN Bingxu1, CHENG Yufeng1. Inhibiting effects of combinative treatment of retinoblastoma 94 with radiotherapy in a mouse xenograft model [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2010, 48(6): 26-.
[15] ZHANG Meng, WU Jun, TONG Shanshan, WANG Wei, SU Nan, LUO Fuquan, LU Mingjun. Effect of AMPK in rat vascular smooth muscle cell proliferation through the mTOR pathway [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2010, 48(6): 17-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!