山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (1): 38-44.doi: 10.6040/j.issn.1671-7554.0.2022.1150
• 临床医学 • 上一篇
赵恩举1,赵硕2,郭云亮3,王锡明2
ZHAO Enju1, ZHAO Shuo2, GUO Yunliang3, WANG Ximing2
摘要: 目的 探讨颈动脉钙化与脑小血管病(CSVD)MRI总负荷评分的关联性。 方法 回顾性分析2020年1月至2022年1月行颈动脉CTA和颅脑MRI检查的282例CSVD患者的相关资料,评估颈动脉钙化情况(有无钙化、数目、位置、形态和环征)和CSVD总负荷评分(包括腔隙、脑白质高信号、微出血、血管周围间隙扩大)。应用有序多分类Logistic回归分析明确颈动脉钙化与CSVD总负荷的关联性。 结果 共125例(44.3%)患者存在颈动脉钙化,随着颈动脉钙化发生率增加,CSVD总负荷评分增高,差异有统计学意义(χ2=13.814,P=0.003),不同CSVD总负荷组的钙化数目(χ2=16.754,P=0.010)、钙化位置(χ2=17.776,P=0.007)、钙化形态(χ2=28.943,P<0.001)存在统计学差异,而环征在各组间差异无统计学意义(χ2=4.867,P=0.182)。CSVD 3+组的多发钙化、表面钙化、厚钙化/混合钙化的发生率较CSVD 0组增加。校正年龄、性别、高血压、糖尿病、高血脂、颈动脉狭窄程度、重构指数后,颈动脉钙化是CSVD总负荷的独立危险因素(OR=3.687,95%CI:1.013~13.423,P=0.048)。 结论 颈动脉钙化与CSVD总负荷密切相关,可作为CSVD严重程度的预测指标,为CSVD患者的临床防治提供依据。
中图分类号:
[1] 中国研究型医院学会脑小血管病专业委员会《中国脑小血管病诊治专家共识》编写组.中国脑小血管病诊治专家共识2021[J]. 中国卒中杂志, 2021, 16(7): 716-726. [2] 唐若楠, 邢晓娜, 陈晓虹. 脑小血管病影像学标志物总负荷评估及其应用[J]. 中华神经科杂志, 2019, 52(2): 136-142. TANG Ruonan, XING Xiaona, CHEN Xiaohong. Evaluation of total burden of imaging markers for small cerebral vascular diseases and its application [J]. Chinese Journal of Neurology, 2019, 52(2): 136-142. [3] Gong L, Wang H, Dong Q, et al. Intracranial atherosclerotic stenosis is related to post-stroke cognitive impairment: a crosssectional study of minor stroke [J]. Curr Alzheimer Res, 2020, 17(2): 177-184. [4] Del Brutto OH, Mera RM, Gillman J, et al. Calcifications in the carotid siphon correlate with silent cerebral small vessel disease in community-dwelling older adults: a population-based study in rural Ecuador [J]. Geriatr Gerontol Int, 2016, 16(9): 1063-1067. [5] Tao XX, Li GF, Wu YL, et al. Relationship between intracranial internal carotid artery calcification and enlarged cerebral perivascular space [J]. Neuroradiology, 2017, 59(5): 577-586. [6] Yang J, Pan X, Zhang B, et al. Superficial and multiple calcifications and ulceration associate with intraplaque hemorrhage in the carotid atherosclerotic plaque [J]. Eur Radiol, 2018, 28(12): 4968-4977. [7] Lin R, Chen S, Liu G, et al. Association between carotid atherosclerotic plaque calcification and intraplaque hemorrhage: a magnetic resonance imaging study [J]. Arterioscler Thromb Vasc Biol, 2017, 37(6): 1228-1233. [8] Benson JC, Nardi V, Madhavan AA, et al. Reassessing the Carotid Artery Plaque "Rim Sign" on CTA: a new analysis with histopathologic confirmation [J]. Am J Neuroradiol, 2022, 43(3): 429-434. [9] North American Symptomatic Carotid Endarterectomy Trial. Methods, patient characteristics, and progress [J]. Stroke, 1991, 22(6): 711-720. [10] van Veelen A, van der Sangen NMR, Delewi R, et al. Detection of vulnerable coronary plaques using invasive and non-invasive imaging modalities [J]. J Clin Med, 2022, 11(5): 1361. doi:10.3390/jcm11051361. [11] Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration [J]. Lancet Neurol, 2013, 12(8): 822-838. [12] Chen X, Wang J, Shan Y, et al. Cerebral small vessel disease: neuroimaging markers and clinical implication [J]. J Neurol, 2019, 266(10): 2347-2362. [13] Guo Y, Zhao S, Hou X, et al. Insidious Attentional Deficits in Patients with Cerebral Small Vessel Disease Revealed by Attention Network Test [J]. Front Neurol, 2022, 13: 865307. doi:10.3389/fneur.2022.865307. [14] Charidimou A, Boulouis G, Pasi M, et al. MRI-visible perivascular spaces in cerebral amyloid angiopathy and hypertensive arteriopathy [J]. Neurology, 2017, 88(12): 1157-1164. [15] Pasi M, Sugita L, Xiong L, et al. Association of cerebral small vessel disease and cognitive decline after intracerebral hemorrhage [J]. Neurology, 2021, 96(2): e182-e192. [16] Hilal S, Mok V, Youn YC, et al. Prevalence, risk factors and consequences of cerebral small vessel diseases: data from three Asian countries [J]. J Neurol Neurosurg Psychiatry, 2017, 88(8): 669-674. [17] Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical implications [J]. Lancet Neurol, 2019, 18(7): 684-696. [18] Han F, Zhang DD, Zhai FF, et al. Association between large artery stenosis, cerebral small vessel disease and risk of ischemic stroke [J]. Sci China Life Sci, 2021, 64(9): 1473-1480. [19] Tarumi T, Ayaz Khan M, Liu J, et al. Cerebral hemodynamics in normal aging: central artery stiffness, wave reflection, and pressure pulsatility [J]. J Cereb Blood Flow Metab, 2014, 34(6): 971-978. [20] Wang Y, Li C, Ding M, et al. Carotid atherosclerotic calcification characteristics relate to post-stroke cognitive impairment [J]. Front Aging Neurosci, 2021, 13: 682908. doi: 10.3389/fnagi.2021.682908. doi:10.3389/fnagi.2021.682908. [21] Cardoso L, Kelly-Arnold A, Maldonado N, et al. Effect of tissue properties, shape and orientation of microcalcifications on vulnerable cap stability using different hyperelastic constitutive models [J]. J Biomech, 2014, 47(4): 870-877. [22] Alfonso F, Gonzalo N, Nuñez-Gil I, et al. Coronary thrombosis from large, nonprotruding, superficial calcified coronary plaques [J]. J Am Coll Cardiol, 2013, 62(23): 2254. doi:10.1016/j.jacc.2013.04.106. [23] Xu X, Hua Y, Liu B, et al. Correlation between calcification characteristics of carotid atherosclerotic plaque and plaque vulnerability [J]. Ther Clin Risk Manag, 2021, 17: 679-690. doi:10.2147/TCRM.S303185. [24] Kan Y, He W, Ning B, et al. The correlation between calcification in carotid plaque and stroke: calcification may be a risk factor for stroke [J]. Int J Clin Exp Pathol, 2019, 12(3): 750-758. [25] Zhang J, Wang Z, Zhou M, et al. Association between asymptomatic vulnerable carotid plaques and cognitive impairment in rural adults [J]. Front Neurol, 2020, 11:662. doi:10.3389/fneur.2020.00662. [26] Kidwell CS, Rosand J, Norato G, et al. Ischemic lesions, blood pressure dysregulation, and poor outcomes in intracerebral hemorrhage [J]. Neurology, 2017, 88(8): 782-788. [27] Zhu R, Li Y, Chen L, et al. Total burden of cerebral small vessel disease on MRI may predict cognitive impairment in parkinsons disease [J]. J Clin Med, 2022, 11(18): 5381. doi:10.3390/jcm11185381. [28] Jiménez-Balado J, Riba-Llena I, Abril O, et al. Cognitive impact of cerebral small vessel disease changes in patients with hypertension [J]. Hypertension, 2019, 73(2): 342-349. |
[1] | 陶国伟,王芳,董向毅,徐亚瑄,赵琳丽,胡蓓蓓. 子宫腺肌病的超声与MRI诊断及进展[J]. 山东大学学报 (医学版), 2022, 60(7): 56-65. |
[2] | 左立平,蒋丰洋,周斌彬,范金蕾,梁永锋,邓展昊,于德新. 术前MRI在预测169例肝细胞肝癌微血管侵犯及早期复发的价值[J]. 山东大学学报 (医学版), 2022, 60(3): 89-95. |
[3] | 冯宝民,王舟,徐晗,李佳存,于乔文,修建军. 抗髓鞘少突胶质细胞糖蛋白IgG抗体相关疾病临床及影像特征[J]. 山东大学学报 (医学版), 2022, 60(3): 45-50. |
[4] | 刘学业,李齐明,唐弘毅,徐秋平,陈文倩,郭泾. 年轻成人颞下颌关节髁突体积、表面积与关节盘矢向位置的关系[J]. 山东大学学报 (医学版), 2021, 59(6): 117-121. |
[5] | 张高瑞,张玉婷,赵雨萱,王方青,于德新. MnFe2O4@CNS纳米探针在胰腺癌诊疗一体化中的价值[J]. 山东大学学报 (医学版), 2021, 59(4): 48-55. |
[6] | 宋珍珍,孙小玲,李海鸥,王芳,张冉,于德新. 120例胶质瘤及瘤周水肿MRI影像组学在评估肿瘤复发中的价值[J]. 山东大学学报 (医学版), 2021, 59(11): 53-60. |
[7] | 陈晓丽,桂振朝,高杨,邢梦瑶,修建军. 13例涎腺导管癌的影像学表现分析[J]. 山东大学学报 (医学版), 2021, 59(1): 78-82. |
[8] | 孙珊珊,房雷,赵翠萍,钟庆,高翔,李玲. 伴可逆性后部脑病综合征MR表现的急性间歇性卟啉病1例报告并文献复习[J]. 山东大学学报 (医学版), 2020, 58(2): 118-121. |
[9] | 陆菁菁,夏宇. 子宫内膜异位症的影像学诊断[J]. 山东大学学报 (医学版), 2019, 57(6): 40-45. |
[10] | 张晓倩,孟祥水,任庆国,南晓敏,安盼盼,帅欣艳,夏晓娜,王璇. 磁共振波谱成像对检测非痴呆型血管性认知障碍的探讨[J]. 山东大学学报 (医学版), 2019, 57(4): 42-46. |
[11] | 张丽红,王林省,陈东风,陈月芹,李娴,刘艳杰,李磊. 肾脏混合性上皮间质瘤的CT和MRI表现[J]. 山东大学学报 (医学版), 2018, 56(7): 70-75. |
[12] | 张丽红,李娴,王林省,李宏磊,李磊. 含脂肪节细胞神经瘤的影像学表现与病理对照[J]. 山东大学学报 (医学版), 2018, 56(12): 73-78. |
[13] | 王玉红,张丽红,王林省,陈月芹,王彦辉,王皆欢,李传福. 消化道颗粒细胞瘤的影像学表现[J]. 山东大学学报(医学版), 2017, 55(8): 66-70. |
[14] | 许玉军,柳明,何祥萌,李成利. 1.0T开放型磁共振引导经皮穿刺125I放射性粒子植入治疗晚期胰腺癌[J]. 山东大学学报(医学版), 2017, 55(2): 21-25. |
[15] | 王耸,程洪斌,伊龙,王培申,孙宪昶,安沂华. 1 060例脑性瘫痪患者MRI表现及其与临床特征的关系[J]. 山东大学学报 (医学版), 2017, 55(12): 36-42. |
|