您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (6): 71-75.doi: 10.6040/j.issn.1671-7554.0.2019.1283

• • 上一篇    

青年人中的成年发病型糖尿病13型1例报道

李林童,侯新国,秦君,梁凯,任建民   

  1. 山东大学齐鲁医院内分泌科, 山东 济南 250012
  • 发布日期:2022-09-27
  • 通讯作者: 侯新国. E-mail:houxinguo@sdu.edu.cn

A case report of maturity-onset diabetes of the young13

LI Lintong, HOU Xinguo, QIN Jun, LIANG Kai, REN Jianmin   

  1. Department of Endocrinology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
  • Published:2022-09-27

摘要: 目的 探讨青年人中的成年发病型糖尿病13型(MODY13)的临床表现、诊断方法及治疗方案。 方法 完善1例MODY13患者入院后的相关检查,同时行全外显子组检测。 结果 全外显子组检测结果显示,患者内向整流钾离子通道J家族11因子(KCNJ11)存在变异,调整治疗方案为服用格列美脲能有效改善糖尿病症状。 结论 MODY13患者的诊断需借助基因检测,确诊后根据患者年龄使用药物治疗并对饮食进行调控,能够有效控制血糖。

关键词: 青年人中的成年发病型糖尿病13型, 特殊类型糖尿病, 内向整流钾离子通道J家族11因子, 糖尿病, 全外显子组检测, 磺脲类药物

Abstract: Objective To investigate the clinical manifestations, diagnosis and treatment of maturity-onset diabetes of the young13(MODY13). Methods One patient with MODY13 was examined after admission, and whole exome test was performed. Results Whole exome test showed that there was a mutation in potassium channel, inwardly rectifying subfamily J, member 11(KCNJ11). The treatment plan was adjusted. After glimepiride was administered, symptoms of diabetes were effectively improved. Conclusion The diagnosis of MODY13 requires genetic testing. After confirmation, medication and diet should be adjusted according to patients age to control blood glucose.

Key words: Maturity-onset diabetes of the young13, Special type of diabetes, Potassium channel, inwardly rectifying subfamily J, member 11, Diabetes, Whole exome test, Sulfonylureas

中图分类号: 

  • R587
[1] McDonald T, Ellard S. Maturity onset diabetes of the young: identification and diagnosis[J]. Ann Clin Biochem, 2013, 50(5): 403-415.
[2] Gupta MK, Vadde R. A computational structural biology study to understand the impact of mutation on structure-function relationship of inward-rectifier potassium ion channel Kir6.2 in human[J]. J Biomol Struct Dyn, 2020, 1-14. doi:10. 1080/07391102.2020.1733666.
[3] Bowman P, McDonald TJ, Knight BA, et al. Patterns of postmeal insulin secretion in individuals with sulfonylurea-treated KCNJ11 neonatal diabetes show predominance of non-KATP-channel pathways[J]. BMJ Open Diabetes Res Care, 2019, 7(1): e000721.
[4] Glotov OS, Serebryakova EA, Turkunova ME, et al. Whole exome sequencing in Russian children with non type 1 diabetes mellitus reveals a wide spectrum of genetic variants in MODY related and unrelated genes[J]. Mol Med Rep, 2019, 20(6): 4905-4914.
[5] 张文博, 刘国良. MODY 13的研究、认识现状及处理[J]. 实用糖尿病杂志, 2017(3): 5-6. ZHANG Wenbo, LIU Guoliang. Research, Cognitive Status and Treatment of MODY 13[J]. Journal of Practical Diabetology, 2017(3): 5-6.
[6] Bonnefond A, Philippe J, Durand E, et al. Whole-exome sequencing and high throughput genotyping identified KCNJ11 as the thirteenth MODY gene[J]. PLoS One, 2012, 7(6): e37423.
[7] Siddiqui K, Musambil M, Nazir N. Maturity onset diabetes of the young(MODY)—history, first case reports and recent advances[J]. Gene, 2015, 555(1): 66-71.
[8] Ashcroft FM, Gribble FM. ATP-sensitive K+ channels and insulin secretion: their role in health and disease[J]. Diabetologia, 1999, 42(8): 903-919.
[9] Petersmann A, Müller-Wieland D, Müller UA, et al. Definition, classification and diagnosis of diabetes mellitus[J]. Exp Clin Endocrinol Diabetes, 2018, 126(7): 406-410.
[10] Warncke K, Kummer S, Raile K, et al. Frequency and characteristics of MODY 1(HNF4A Mutation)and MODY 5(HNF1B Mutation): analysis from the DPV database[J]. J Clin Endocrinol Metab, 2019, 104(3): 845-855.
[11] Gloyn AL, Pearson ER, Antcliff JF, et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes[J]. N Engl J Med, 2004, 350(18): 1838-1849.
[12] Ahmed DM, Abdel Dayem SM, Abdel Kader M, et al. Utilizing the KCNJ11 gene mutations in spotting Egyptian patients with permanent neonatal diabetes who can benefit from treatment shift[J]. Lab Med, 2017, 48(3): 225-229.
[13] Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Med, 2015, 17(5): 405-424.
[14] 李秀珍, 刘丽, 盛慧英, 等. 格列本脲治疗新生儿糖尿病4例分析[J].中国实用儿科杂志, 2012, 27(5): 364-367. LI Xiuzhen, LIU Li, SHENG Huiying, et al. Glibenclamide in the treatment of 4 cases of neonatal diabetes[J]. Chinese Journal of Practical Pediatrics, 2012, 27(5): 364-367.
[15] 王晓艳, 陈临琪, 孙辉, 等. 儿童糖尿病基因检测研究进展[J]. 中国实用儿科杂志, 2019, 34(6): 523-526. WANG Xiaoyan, CHEN Linqi, SUN Hui, et al. Research progress of genetic testing for childhood diabetes[J]. Chinese Journal of Practical Pediatrics, 2019, 34(6): 523-526.
[16] 张丽娜, 郭立新. 磺脲类降糖药物的临床认识[J]. 中国实用内科杂志, 2014, 34(10): 969-973. ZHANG Lina, GUO Lixin. Clinical knowledge of sulfonylurea hypoglycemic drugs[J]. Chinese Journal of Practical Internal Medicine, 2014, 34(10): 969-973.
[17] Shepherd H, Shields M, Hudson M, et al. A UK nationwide prospective study of treatment change in MODY: genetic subtype and clinical characteristics predict optimal glycaemic control after discontinuing insulin and metformin[J]. Diabetologia, 2018, 61(12): 2520-2527.
[18] Piccolo R, Franzone A, Koskinas KC, et al. Effect of diabetes mellitus on frequency of adverse events in patients with acute coronary syndromes undergoing percutaneous coronary intervention[J]. Am J Cardiol, 2016, 118(3): 345-352.
[19] Dallali H, Pezzilli S, Hechmi M, et al. Genetic characterization of suspected MODY patients in Tunisia by targeted next-generation sequencing[J]. Acta Diabetol, 2019, 56(5): 515-523.
[20] Ming-Qiang Z, Yang-Li D, Ke H, et al. Maturity onset diabetes of the young(MODY)in Chinese children: genes and clinical phenotypes[J]. J Pediatr Endocrinol Metab, 2019, 32(7): 759-765.
[21] Bowman P, Sulen Å, Barbetti F, et al. Effectiveness and safety of long-term treatment with sulfonylureas in patients with neonatal diabetes due to KCNJ11 mutations: an international cohort study[J]. Lancet Diabetes Endocrinol, 2018, 6(8): 637-646.
[1] 李涛,杨春林,杜通,李亨,王聪聪,李晓丽,段瑞生,张蓬. 糖尿病对重症肌无力NK细胞亚型及功能的影响[J]. 山东大学学报 (医学版), 2022, 60(5): 31-36.
[2] 唐钦连,张玉超,赵蕙琛,马小莉,于民民,刘元涛. 携带成对盒4基因突变早发糖尿病1例报道并文献复习[J]. 山东大学学报 (医学版), 2022, 60(5): 104-108.
[3] 吕丽,姜璐,陈诗鸿,庄向华,宋玉文,王殿辉,安文娟,李倩,潘喆. 210例绝经后2型糖尿病发生骨质疏松的相关因素[J]. 山东大学学报 (医学版), 2021, 59(7): 19-25.
[4] 郑凤杰,宋玉文,孙爱丽,潘喆,王殿辉,娄能俊,吕丽,庄向华,陈诗鸿. 糖尿病周围神经病变与肌少症的关联性[J]. 山东大学学报 (医学版), 2021, 59(6): 38-44.
[5] 刘萍,宋玉文,王萍,田光伟,郑凤杰,吕丽,杜娇娇,张静,庄向华,陈诗鸿. 维生素D缺乏与2型糖尿病合并抑郁状态的相关性[J]. 山东大学学报 (医学版), 2021, 59(6): 51-56,102.
[6] 萧阳,陶宇,王方怡,梁俞秀,张晋,季晓康,王志萍. 山东省部分地区PM2.5和PM10暴露与妊娠期糖尿病的关联性分析[J]. 山东大学学报 (医学版), 2021, 59(12): 101-109.
[7] 孔令群,王学文,王海滨,曹学峰,吴燕彬,张兴元. 副神经节瘤1例报告[J]. 山东大学学报 (医学版), 2020, 1(9): 110-112.
[8] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7-14.
[9] 王余余,高丽,陈少华. 94例2型糖尿病患者急性脑梗死后认知障碍与甲状腺功能的关联性[J]. 山东大学学报 (医学版), 2020, 58(5): 56-61.
[10] 丁华琳,李扬扬,于丰源,战伟伟,于苏国. 达格列净通过Klotho/TGF-β1通路抑制糖尿病肾病大鼠肾纤维化的作用[J]. 山东大学学报 (医学版), 2020, 58(3): 75-80.
[11] 金海燕,张炎,马小莉,韩羽,赵蕙琛,刘元涛,张玉超. MiR-122与miR-33a在2型糖尿病合并冠心病患者中的表达[J]. 山东大学学报 (医学版), 2020, 58(3): 94-98.
[12] 唐博,邵静,崔静,孙健平. 2型糖尿病发病与高密度脂蛋白关系的机制研究[J]. 山东大学学报 (医学版), 2020, 58(3): 99-106.
[13] 曾雁冰,王秋鹏,方亚. 厦门市糖尿病“三师共管”模式的卫生经济学评价[J]. 山东大学学报 (医学版), 2019, 57(8): 89-94.
[14] 姜立娟,刘福强,蒋子允,李文娟,林鹏,王川,侯新国,陈丽. 达格列净改善超重及肥胖2型糖尿病患者脂代谢及内脏脂肪含量[J]. 山东大学学报 (医学版), 2019, 57(6): 87-93.
[15] 杜昊,程玉刚,黄鑫,刘少壮,张光永,胡三元. 袖状胃切除术对2型糖尿病大鼠肺组织损伤的影响[J]. 山东大学学报 (医学版), 2019, 57(4): 20-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!