山东大学学报 (医学版) ›› 2019, Vol. 57 ›› Issue (4): 20-26.doi: 10.6040/j.issn.1671-7554.0.2019.081
• • 上一篇
杜昊,程玉刚,黄鑫,刘少壮,张光永,胡三元
DU Hao, CHENG Yugang, HUANG Xin, LIU Shaozhuang, ZHANG Guangyong, HU Sanyuan
摘要: 目的 探讨袖状胃切除术对2型糖尿病大鼠肺组织损伤的影响及其机制。 方法 Wistar大鼠腹腔内注射链脲霉素诱导2型糖尿病大鼠模型,将2型糖尿病大鼠随机分为两组:袖状胃切除组(SG组,n=10)及假手术组(Sham组,n=10)。术后观察大鼠体质量、进食量、空腹血糖(FBG),并行口服糖耐量试验(OGTT)。术后第16周处死大鼠,取大鼠肺组织,行HE染色观察肺组织形态学表现;采用Western blotting以及免疫组化技术检测肺组织内炎症因子白介素6(IL-6)、肿瘤坏死因子α(TNF-α)及氧化应激指标硝基酪氨酸(NT)的表达;生化检测肺组织内氧化应激指标一氧化氮(NO)、丙二醛(MDA)的表达及超氧化物歧化酶(SOD)的活力。 结果 SG组大鼠术后死亡1只,其他大鼠无死亡。SG组大鼠相较于Sham组大鼠血糖下降(FBG:F=100.70,P<0.01;OGTT曲线下面积AUCOGTT:F=88.15,P<0.01),肺组织肺泡间隔增厚情况减轻、肺泡内出血减少, IL-6、TNF-α、NT、NO、MDA的表达减少(P<0.01),SOD的活力增加(P<0.01)。 结论 袖状胃切除术可以缓解2型糖尿病大鼠的肺组织损伤,可能是通过控制血糖、进而减少肺组织内炎症因子的表达和改善肺组织内氧化应激状态来实现。
中图分类号:
[1] Wang L, Gao P, Zhang M, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013[J]. JAMA, 2017, 317(24): 2515-2523. [2] Schauer PR, Bhatt DL, Kirwan JP, et al. Bariatric surgery versus intensive medical therapy for diabetes-5-year outcomes[J]. N Engl J Med, 2017, 376(7): 641-651. [3] Sjostrom L, Peltonen M, Jacobson P, et al. Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications[J]. JAMA, 2014, 311(22): 2297-2304. [4] Rubino F, Nathan DM, Eckel RH, et al. Metabolic surgery in the treatment algorithm for type 2 diabetes: a joint statement by International Diabetes Organizations[J]. Diabetes Care, 2016, 39(6): 861-877. [5] Mingrone G, Panunzi S, De Gaetano A, et al. Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomised controlled trial[J]. Lancet, 2015, 386(9997): 964-973. [6] 杜昊, 王志青, 徐海莉, 等. 袖状胃切除术对2型糖尿病大鼠肾功能的影响[J]. 中华外科杂志, 2015, 53(8): 617-621. DU Hao, WANG Zhiqing, XU Haili, et al. The effects of sleeve gastrectomy on renal function in type 2 diabetic rats[J]. Chinese Journal of Surgery, 2015, 53(8): 617-621. [7] Angrisani L, Santonicola A, Iovino P, et al. Bariatric surgery and endoluminal procedures: IFSO worldwide survey 2014[J]. Obes Surg, 2017, 27(9): 2279-2289. [8] Buchwald H, Oien DM. Metabolic/bariatric surgery worldwide 2008[J]. Obes Surg, 2009, 19(10): 1341-1345. [9] Lontchi-Yimagou E, Sobngwi E, Matsha TE, et al. Diabetes mellitus and inflammation[J]. Curr Diab Rep, 2013, 13(3): 435-444. [10] Yeh HC, Punjabi NM, Wang NY, et al. Cross-sectional and prospective study of lung function in adult with type 2 diabetes: the Atherosclerosis Risk in Communities(ARIC)Study[J]. Diabetes Care, 2008, 31(4): 741-746. [11] Cayir A, Ugan RA, Albayrak A, et al. The lung endothelin system: a potent therapeutic target with bosentan for the amelioration of lung alterations in a rat model of diabetes mellitus[J]. J Endocrinol Invest, 2015, 38(9): 987-998. [12] Karra E, Yousseif A, Batterham RL. Mechanisms facilitating weight loss and resolution of type 2 diabetes following bariatric surgery[J]. Trends Endocrinol Metab, 2010, 21(6): 337-344. [13] Sandler M. Is the lung a ‘target organ’ in diabetes mellitus?[J]. Arch Intern Med, 1990, 150(7): 1385-1388. [14] Hagiwara S, Iwasaka H, Shingu C, et al. The effect of experimental diabetes on high mobility group box 1 protein expression in endotoxin-induced acute lung injury[J]. J Surg Res, 2011, 168(1): 111-118. [15] Guimieniczek A, Krzywdzinska M, Nowak M. Modulation of nitrosative/oxidative stress in the lung of hyperglycemic rabbits by two antidiabetics, pioglitazone and repaglinide[J]. Exp Lung Res, 2009, 35(5): 371-379. [16] Cuzzocrea S, Pisano B, Dugo L, et al. Rosiglitazone, a ligand of the peroxisome proliferator-activated receptor-gamma, reduces acute inflammation[J]. Eur J Pharmacol, 2004, 483(1): 79-93. [17] Grossmann V, Schmitt VH, Zeller T, et al. Profile of the immune and inflammatory response in individuals with prediabetes and type 2 diabetes[J]. Diabetes Care, 2015, 38(7): 1356-1364. [18] Mirza S, Hossain M, Mathews C, et al. Type 2-diabetes is associated with elevated levels of TNF-alpha, IL-6 and adiponectin and low levels of leptin in a population of Mexican Americans: a cross-sectional study[J]. Cytokine, 2012, 57(1): 136-142. [19] Peppa M, Stavroulakis P, Raptis SA. Advanced glycoxidation products and impaired diabetic wound healing[J]. Wound Repair Regen, 2009, 17(4): 461-472. [20] Yamagishi S, Matsui T. Soluble form of a receptor for advanced glycation end products(sRAGE)as a biomarker[J]. Front Biosci(Elite edition), 2010, 2: 1184-1195. [21] Vlassara H, Cai W, Crandall J, et al. Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy[J]. Proc Natl Acad Sci USA, 2002, 99(24): 15596-15601. [22] Calle MC, Fernandez ML. Inflammation and type 2 diabetes[J]. Diabetes Metab, 2012, 38(3): 183-191. [23] Jovinge S, Hamsten A, Torvall P, et al. Evidence for a role of tumor necrosis factor alpha in disturbances of triglyceride and glucose metabolism predisposing to coronary heart disease[J]. Metabolism, 1998, 47(1): 113-118. [24] Oztay F, Kandil A, Gurel E, et al. The relationship between nitric oxide and leptin in the lung of rat with streptozotocin-induced diabetes[J]. Cell Biochem Funct, 2008, 26(2): 162-171. [25] Wen Y, Skidmore JC, Porter-Turner MM, et al. Relationship of glycation, antioxidant status and oxidative stress to vascular endothelial damage in diabetes[J]. Diabetes Obes Metab, 2002, 4(5): 305-308. [26] Nakhjavani M, Esteghamati A, Nowroozi S, et al. Type 2 diabetes mellitus duration: an independent predictor of serum malondialdehyde levels[J]. Singapore Med J, 2010, 51(7): 582-585. [27] Reis JS, Veloso CA, Volpe CM, et al. Soluble RAGE and malondialdehyde in type 1 diabetes patients without chronic complications during the course of the disease[J]. Diab Vasc Dis Res, 2012, 9(4): 309-314. [28] Gumieniczek A, Hopkala H, Wójtowicz Z, et al. Changes in antioxidant status of lung tissue in experimental diabetes in rabbits[J]. Clin Biothem, 2002, 35(2): 147-149. [29] Beckman JS, Beckman TW, Chen J, et al.Apparent hydroxyl radical production by perocynitrite: implication for endothelial injury from nitric oxide and superoxide[J]. Proc Natl Acad Sci USA, 1990, 87(4): 1620-1624. [30] Ceriello A, Mercuri F, Quagliaro L, et al. Detection of nitrotyrosine in the diabetic plasma: evidence of oxidative stress[J]. Diabetologia, 2001, 44(7): 834-838. [31] Chaudry J, Ghosh N, Roy K, et al. Antihyperglycemic effect of a new thiazolidinedione analogue and its role in ameliorating oxidative stress in alloxan-induced diabetic rats[J]. Life Sci, 2007, 80(12): 1135-1142. |
[1] | 吴逸南 葛志明 李方 贺红 姜虹 张运. 自发性高血压大鼠肾脏血管紧张素转换酶2的表达[J]. 山东大学学报(医学版), 2209, 47(6): 5-. |
[2] | 祝林 胡三元 张光永 丁祥就. 前列腺素E2对阻塞性黄疸大鼠小肠粘膜形态的保护作用[J]. 山东大学学报(医学版), 2209, 47(6): 12-. |
[3] | 孙涛 张道来 谢珊珊 王玉卓 冯玉新 辛华. 酒精对原代培养的神经前体细胞间隙连接蛋白43表达的影响[J]. 山东大学学报(医学版), 2209, 47(6): 20-. |
[4] | 张道来 孙涛 谢珊珊 王玉卓 赵玲 冯玉新 辛华. 体外原代培养胎鼠大脑皮层神经元NMDAR1亚基表达的发育性变化[J]. 山东大学学报(医学版), 2209, 47(6): 28-32. |
[5] | 徐宁宇 王磊 郝恩魁 苏国海. STEMI患者急诊PCI前口服阿托伐他汀对炎症介质及左心室功能的影响[J]. 山东大学学报(医学版), 2209, 47(6): 69-72. |
[6] | 郝跃伟 刘雪平 赵婷婷 郑敏 王一兵. 环氧化酶2基因多态性与动脉粥样硬化缺血性脑卒中的相关性[J]. 山东大学学报(医学版), 2209, 47(6): 95-98. |
[7] | 张凤,吴哲,徐俊,刘玉兰. 6例非酒精性脂肪性肝病小鼠肠道B细胞的变化[J]. 山东大学学报 (医学版), 2022, 60(9): 67-73. |
[8] | 韩靖,贾春玲. 肺癌患者胸外手术前治疗牙周基础疾病对预防术后肺炎发生的效果评价[J]. 山东大学学报 (医学版), 2022, 60(9): 113-118. |
[9] | 吴虹,张正铎,唐延金,祁少俊,高希宝. 5-甲基四氢叶酸对大鼠动脉粥样硬化的潜在干预作用[J]. 山东大学学报 (医学版), 2022, 60(8): 6-13. |
[10] | 高中霞,张铭,樊明德,谭晨阳,王梦迪,王超,樊跃飞,丁守銮,王成伟. 伽玛刀治疗81例肺癌脑转移瘤的疗效及预后因素[J]. 山东大学学报 (医学版), 2022, 60(8): 44-49. |
[11] | 张秉芬,周胜红,王哲. 延龄草皂苷通过抑制TGF-β/Smad3与Wnt/β-catenin信号通路改善大鼠肺纤维化[J]. 山东大学学报 (医学版), 2022, 60(8): 23-29. |
[12] | 洪慧,张卫海,李惠娴,李伟伟,张金岭. 异时性阑尾印戒细胞癌合并肺腺癌双原发癌1例[J]. 山东大学学报 (医学版), 2022, 60(8): 130-132. |
[13] | 李锐,石存现,于翠翠. 右美托咪定对30例体外循环患者肠道屏障损伤的影响[J]. 山东大学学报 (医学版), 2022, 60(7): 83-88. |
[14] | 秦静,杨飞,陈谦,夏涵岱,刘延国,王秀问. 晚期驱动基因阴性、PD-L1表达阴性非鳞非小细胞肺癌一线治疗方案的网状Meta分析[J]. 山东大学学报 (医学版), 2022, 60(7): 74-82. |
[15] | 王福立,孙银萍,秦杰,荣建胜. DC-CIK细胞联合EGFR-TKI治疗35例老年晚期EGFR突变肺癌的效果[J]. 山东大学学报 (医学版), 2022, 60(7): 110-117. |
|