您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2018, Vol. 56 ›› Issue (4): 23-27.doi: 10.6040/j.issn.1671-7554.0.2018.032

• • 上一篇    

线粒体异常与卵巢早衰

佟超   

  1. 浙江大学生命科学研究院, 浙江 杭州 310058
  • 发布日期:2022-09-27
  • 通讯作者: 佟超. E-mail:ctong@zju.edu.cn
  • 基金资助:
    国家重点研发计划(2017YFC1001100)

Mitochondrial defects and premature ovarian failure

TONG Chao   

  1. Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
  • Published:2022-09-27

摘要: 卵巢早衰是影响女性生殖健康的严重疾病,其致病机制尚不明确。线粒体作为细胞中重要的能量和代谢中心,参与细胞内多种生命活动,其功能异常与卵巢早衰密切相关。线粒体是哺乳动物细胞中惟一含有独立基因组的细胞器。在绝大多数动物中,线粒体DNA是母性遗传的,这意味着卵母细胞是线粒体将其遗传物质传递到下一代的惟一载体。卵母细胞体积大,线粒体DNA拷贝数多,线粒体形态也与体细胞有很大区别。这些特性使得卵巢中线粒体的功能及调控都有其特别之处。从线粒体DNA、线粒体蛋白合成与降解稳态,以及线粒体动态调节几个方面综述了线粒体异常与卵巢功能障碍和早衰的关系。

关键词: 线粒体, 卵巢早衰, 线粒体DNA, 线粒体动态, Perrault综合征

Abstract: Premature ovarian failure(POF)is a severe reproductive disease leading to infertility which affects many women. However, its etiology is not clear. Mitochondria, the energy factory and center of metabolism, participates many cellular activities. Malfunctions of mitochondria are associated with POF. Mitochondrion is the only organelle that has its own genome in the mammalian cells. In the majority of species, mitochondria are transmitted maternally, which means that oocyte is the only carrier that passes mitochondrial DNA(mtDNA)to the next generation. Oocytes are large and have many copies of mtDNA. The mitochondria in oocytes have distinct morphology compared with that in the 山 东 大 学 学 报 (医 学 版)56卷4期 -佟超.线粒体异常与卵巢早衰 \=-somatic cells. These special features of mitochondria in ovary lead to special regulatory mechanisms. In this review, we discussed how the defects in mtDNA, mitochondrial protein homeostasis, and mitochondrial dynamics lead to ovarian dysfunction.

Key words: Mitochondria, Premature ovarian failure, Mitochondrial DNA, Mitochondrial dynamics, Perrault syndrome

中图分类号: 

  • Q28
[1] López-Otín C, Galluzzi L, Freije JMP, et al. Metabolic control of longevity[J]. Cell, 2016, 166(4): 802-821.
[2] Laven JS. Primary ovarian insufficiency[J]. Semin Reprod Med, 2016, 34(4): 230-234.
[3] May-Panloup P, Boucret L, Chao de la Barca JM, et al. Ovarian ageing: the role of mitochondria in oocytes and follicles[J]. Hum Reprod Update, 2016, 22(6): 725-743.
[4] St John JC. Transmission, inheritance and replication of mitochondrial DNA in mammals: implications for reproductive processes and infertility[J]. Cell Tissue Res, 2012, 349(3): 795-808.
[5] Chen X, Prosser R, Simonetti S, et al. Rearranged mitochondrial genomes are present in human oocytes[J]. Am J Hum Genet, 1995, 57(2): 239-247.
[6] Reynier P, May-Panloup P, Chretien MF, et al. Mitochondrial DNA content affects the fertilizability of human oocytes[J]. Mol Hum Reprod, 2001, 7(5): 425-429.
[7] Spikings EC, Alderson J, St John JC. Regulated mitochondrial DNA replication during oocyte maturation is essential for successful porcine embryonic development[J]. Biol Reprod, 2007, 76(2): 327-335.
[8] May-Panloup P, Chretien MF, Jacques C, et al. Low oocyte mitochondrial DNA content in ovarian insufficiency[J]. Hum Reprod, 2005, 20(3): 593-597.
[9] Cao L, Shitara H, Horii T, et al. The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells[J]. Nat Genet, 2007, 39(3): 386-390.
[10] Cree LM, Samuels DC, de Sousa Lopes SC, et al. A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes[J]. Nat Genet, 2008, 40(2): 249-254.
[11] Wai T, Teoli D, Shoubridge EA. The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes[J]. Nat Genet, 2008, 40(12): 1484-1488.
[12] Van Blerkom J. Mitochondria in human oogenesis and preimplantation embryogenesis: engines of metabolism, ionic regulation and developmental competence[J]. Reproduction, 2004, 128(3): 269-280.
[13] St John JC, Facucho-Oliveira J, Jiang Y, et al. Mitochondrial DNA transmission, replication and inheritance: a journey from the gamete through the embryo and into offspring and embryonic stem cells[J]. Hum Reprod Update, 2010, 16(5): 488-509.
[14] Diez-Juan A, Rubio C, Marin C, et al. Mitochondrial DNA content as a viability score in human euploid embryos: less is better[J]. Fertil Steril, 2015, 104(3): 534-541.
[15] Trifunovic A, Wredenberg A, Falkenberg M, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase[J]. Nature, 2004, 429(6990): 417-423.
[16] Luoma P, Melberg A, Rinne JO, et al. Parkinsonism, premature menopause, and mitochondrial DNA polymerase gamma mutations: clinical and molecular genetic study[J]. Lancet, 2004, 364(9437): 875-882.
[17] Day FR, Ruth KS, Thompson DJ, et al. Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1 -mediated DNA repair[J]. Nat Genet, 2015, 47(11): 1294-1303.
[18] Morino H, Pierce SB, Matsuda Y, et al. Mutations in Twinkle primase-helicase cause Perrault syndrome with neurologic features[J]. Neurology, 2014, 83(22): 2054-2061.
[19] Demain LA, Urquhart JE, OSullivan J, et al. Expanding the genotypic spectrum of Perrault syndrome[J]. Clin Genet, 2017, 91(2): 302-312.
[20] Sissler M, Gonzalez-Serrano LE, Westhof E. Recent advances in mitochondrial aminoacyl-tRNA synthetases and disease[J]. Trends Mol Med, 2017, 23(8): 693-708.
[21] Pierce SB, Gersak K, Michaelson-Cohen R, et al. Mutations in LARS2, encoding mitochondrial leucyl-tRNA synthetase, lead to premature ovarian failure and hearing loss in Perrault syndrome[J]. Am J Hum Genet, 2013, 92(4): 614-620.
[22] Pierce SB, Chisholm KM, Lynch ED, et al. Mutations in mitochondrial histidyl tRNA synthetase HARS2 cause ovarian dysgenesis and sensorineural hearing loss of Perrault syndrome[J]. Proc Natl Acad Sci U S A, 2011, 108(16): 6543-6548.
[23] Chatzispyrou IA, Alders M, Guerrero-Castillo S, et al. A homozygous missense mutation in ERAL1, encoding a mitochondrial rRNA chaperone, causes Perrault syndrome[J]. Hum Mol Genet, 2017, 26(13): 2541-2550.
[24] Jenkinson EM, Rehman AU, Walsh T, et al. Perrault syndrome is caused by recessive mutations in CLPP, encoding a mitochondrial ATP-dependent chambered protease[J]. Am J Hum Genet, 2013, 92(4): 605-613.
[25] Haynes CM, Petrova K, Benedetti C, et al. ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans[J]. Dev Cell, 2007, 13(4): 467-480.
[26] Broadley SA, Hartl FU. Mitochondrial stress signaling: a pathway unfolds[J]. Trends Cell Biol, 2008, 18(1): 1-4.
[27] Gispert S, Parganlija D, Klinkenberg M, et al. Loss of mitochondrial peptidase Clpp leads to infertility, hearing loss plus growth retardation via accumulation of CLPX, mtDNA and inflammatory factors[J]. Hum Mol Genet, 2013, 22(24): 4871-4887.
[28] Youle RJ, van der Bliek AM, Mitochondrial fission, fusion, and stress[J]. Science, 2012, 337(6098): 1062-1065.
[29] Chan DC. Fusion and fission: interlinked processes critical for mitochondrial health[J]. Annu Rev Genet, 2012, 46: 265-287. doi: 10.1146/annurev-genet-110410-132529.
[30] Huang H, Gao Q, Peng X, et al. piRNA-associated germline nuage formation and spermatogenesis require MitoPLD profusogenic mitochondrial-surface lipid signaling[J]. Dev Cell, 2011, 20(3): 376-387.
[31] Zhang Y, Liu X, Bai J, et al. Mitoguardin regulates mitochondrial fusion through mitoPLD and is required for neuronal homeostasis[J]. Mol Cell, 2016, 61(1): 111-124.
[32] Motta PM, Nottola SA, Makabe S, et al. Mitochondrial morphology in human fetal and adult female germ cells[J]. Hum Reprod, 2000, 15(Suppl 2): 129-147.
[33] Sieber MH, Thomsen MB, Spradling AC. electron transport chain remodeling by GSK3 during oogenesis connects nutrient state to reproduction[J]. Cell, 2016, 164(3): 420-432.
[34] Dumollard R, Ward Z, Carroll J, et al. Regulation of redox metabolism in the mouse oocyte and embryo[J]. Development, 2007, 134(3): 455-465.
[35] Dumollard R, Duchen M, Carroll J. The role of mitochondrial function in the oocyte and embryo[J]. Curr Top Dev Biol, 2007, 77: 21-49. doi: 10.1016/S0070-2153(06)77002-8.
[36] Udagawa O, Ishihara T, Maeda M, et al. Mitochondrial fission factor Drp1 maintains oocyte quality via dynamic rearrangement of multiple organelles[J]. Curr Biol, 2014, 24(20): 2451-2458.
[37] Wakai T, Harada Y, Miyado K, et al. Mitochondrial dynamics controlled by mitofusins define organelle positioning and movement during mouse oocyte maturation[J]. Mol Hum Reprod, 2014, 20(11): 1090-1100.
[38] Liu XM, Zhang YP, Ji SY, et al. Mitoguardin-1 and -2 promote maturation and the developmental potential of mouse oocytes by maintaining mitochondrial dynamics and functions[J]. Oncotarget, 2016, 7(2): 1155-1167.
[39] Liu XM, Zhang YL, Ji SY, et al. Mitochondrial function regulated by Mitoguardin-1/2 is crucial for ovarian endocrine functions and ovulation[J]. Endocrinology, 2017, 158(11): 3988-3999.
[1] 潘鹏飞,徐立升,纪坤乾,王得翔,李玉. 以呼吸衰竭起病的线粒体肌病1例及文献回顾[J]. 山东大学学报 (医学版), 2022, 60(2): 54-59.
[2] 石玉华,王秋敏,戚丹. 辅助生殖技术前沿研究热点及进展[J]. 山东大学学报 (医学版), 2021, 59(9): 97-102.
[3] 张华宇,殷思源,刘健,马嘉旭,宋茹,曹国起,王一兵. 氧糖剥夺条件下培养表皮干细胞的定量蛋白质组学分析[J]. 山东大学学报 (医学版), 2021, 59(4): 17-27.
[4] 顼小凤,王健祯,杨泽华. 血浆游离线粒体DNA拷贝数与烧伤患者病情的相关性[J]. 山东大学学报 (医学版), 2021, 59(11): 61-66.
[5] 焉传祝,王伟,纪坤乾,赵玉英. 线粒体与脑疾病[J]. 山东大学学报 (医学版), 2020, 1(8): 34-41.
[6] 勾云, 周波, 魏操,陈运华, 徐利,刘芬, 张春林, 文敏. 硫辛酸对帕金森病大鼠黑质线粒体的保护作用[J]. 山东大学学报(医学版), 2017, 55(8): 18-23.
[7] 谢海滨,武群政,刘少壮,黄鑫,程玉刚,胡三元,张光永. 肝线粒体相关内质网膜在袖状胃切除术改善糖尿病大鼠胰岛素敏感性中的作用[J]. 山东大学学报(医学版), 2017, 55(10): 36-40.
[8] 栾海辉,许巍,王牧川,吴林,王玲玲,马俊,刘艺鸣. 脊髓小脑性共济失调6型一家系临床、病理和分子生物学特点[J]. 山东大学学报(医学版), 2016, 54(2): 63-67.
[9] 郭长艳, 秦雪娇, 吴晓莉, 高雪, 蔡可丽. 线粒体靶向性肽SS-31对H2O2诱导人晶状体上皮细胞凋亡的保护作用[J]. 山东大学学报(医学版), 2015, 53(8): 23-26.
[10] 赵雪莲, 于君, 谢兆宏, 曹彦军, 刘震, 王晓, 徐琳琳, 杨慧, 郑晓磊, 沈阳, 毕建忠. 线粒体自噬在阿尔茨海默病细胞模型中的作用机制[J]. 山东大学学报(医学版), 2015, 53(10): 1-5.
[11] 邱宗建,杨娟,宋强 . 地西他滨对同步化的G0/G1期MDS-L细胞系线粒体功能的影响[J]. 山东大学学报(医学版), 2014, 52(5): 5-9.
[12] 邱小雪,曹丽丽,杨雪,迟兆富. 癫痫持续状态大鼠海马线粒体分裂、融合的变化[J]. 山东大学学报(医学版), 2013, 51(7): 15-19.
[13] 王晓飞1,丁婷婷1,刘钊1,汲平1,2, 林雪芬1, 祁东1, 冯丹丹1. 偏侧咀嚼对大鼠咬肌线粒体的影响[J]. 山东大学学报(医学版), 2012, 50(12): 52-.
[14] 孙锡波,韩玉香,韩涛,王雪,赵秀鹤,刘学伍,迟兆富. 二氮嗪对氯化锂-匹鲁卡品致痫大鼠海马神经元超微结构及自由基的影响[J]. 山东大学学报(医学版), 2011, 49(2): 19-23.
[15] 赵云霞,张镛,李甲龙,王瑞霞,李彦芬. 丁苯酞拮抗Aβ1-42致原代培养皮层神经元凋亡的保护机制[J]. 山东大学学报(医学版), 2011, 49(11): 34-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!