您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (11): 35-40.doi: 10.6040/j.issn.1671-7554.0.2021.0791

• 临床医学 • 上一篇    下一篇

荧光原位杂交对197例慢性淋巴细胞白血病的诊断

曾睿1,2,胡欣婷1,2,云晓雅1,2,田筝1,2,李青1,刘杰1,张娅1,2,王欣1,2   

  1. 1. 山东大学附属省立医院血液科, 山东 济南 250021;2. 山东第一医科大学附属省立医院血液科, 山东 济南 250021
  • 发布日期:2021-11-11
  • 通讯作者: 王欣. E-mail:xinw007@126.com张娅. E-mail:maryzhangya@gmail.com

Fluorescence in situ hybridization in the diagnosis of 197 cases of chronic lymphocytic leukemia

ZENG Rui1,2, HU Xinting1,2, YUN Xiaoya1,2, TIAN Zheng1,2, LI Qing1, LIU Jie1, ZHANG Ya1,2, WANG Xin1,2   

  1. 1. Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong, China;
    2. Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
  • Published:2021-11-11

摘要: 目的 探讨荧光原位杂交技术(FISH)在慢性淋巴细胞白血病(CLL)诊断与预后评估中的应用,指导CLL患者的精准个体化诊疗。 方法 对2014年1月至2021年1月收治的197例CLL患者采用 RB1(13q14.1)、D13S25(13q14.3)、p53(17p13.1)、ATM(11q22.3)及CSP12(+12)5组基因探针进行FISH检测,对其中62例进行染色体核型分析、75例进行免疫球蛋白重链可变区(IGHV)突变状态检测,分析FISH检测细胞遗传学改变在CLL中的临床意义。 结果 197例初诊CLL患者分子遗传学标志物异常总检出率为56.4%(111/197),其中D13S25(13q14.3)占63.1%(70/111)、RB1(13q14.1)占43.2%(48/111)、p53(17p13.1)占29.7%(33/111)、ATM(11q22.3)占22.5%(25/111)、CSP12(+12)占13.5%(15/111)。同时伴有2种染色体异常患者占34.2%(38/111),其中RB1与D13S25双阳性患者占25.2%(28/111)。同时伴有3种及3种以上染色体异常患者占16.2%(18/111)。相比于CLL患者的染色体核型分析结果,FISH 检测阳性率相对较高(P<0.001)。另外,FISH检测结果与CLL国际预后指数(CLL-IPI)有关。FISH检测阳性CLL患者中CLL-IPI评分为高危/极高危的比例高于FISH检测阴性患者(P=0.009)。FISH-p53阳性CLL患者的CLL-IPI评分均为高危/极高危(P<0.001)。FISH阳性患者中IGHV基因突变者占78%,未突变者占22%。 结论 FISH技术是一种敏感的CLL分子遗传学检测手段,对CLL患者的预后评估和治疗均有重要的指导意义。

关键词: 慢性淋巴细胞白血病, 荧光原位杂交, 细胞遗传学, 预后, 染色体核型分析

Abstract: Objective To explore the application of fluorescence in situ hybridization(FISH)in the diagnosis and prognosis assessment of chronic lymphocytic leukemia(CLL). Methods The 197 CLL patients treated during Jan. 2014 and Jan. 2021 received molecular genetic tests with RB1(13q14.1), D13S25(13q14.3), P53(17p13.1), ATM(11q22.3)and CSP12(+12), 62 of whom underwent karyotype analysis and 75 immunoglobulin heavy chain variable region(IGHV)mutation status detection. Results The total detection rate of abnormal molecular genetic markers was 56.4%(111/197). D13S25(13q14.3)accounted for 63.1%(70/111), followed by RB1(13q14.1)43.2%(48/111), p53(17p13.1)29.7%(33/111), ATM(11q22.3)22.5%(25/111), and CSP12(+12)13.5%(15/111). Patients with 2 chromosomal abnormalities accounted for 34.2%(38/111), among whom RB1 and D13S25 double-positive patients accounted for 25.2%(28/111). Patients with 3 or more chromosomal abnormalities accounted for 16.2%(18/111). The positive rate of FISH was significantly higher than that of conventional cytogenetics(P<0.001). The results of FISH test were correlated with the International Prognostic Index for Chronic Lymphocytic Leukemia(CLL-IPI). The proportion of high-risk and very high-risk patients with positive FISH test results was larger than that with negative FISH test results(P=0.009). The CLL-IPI scores of FISH-P53 positive patients were high or very high(P<0.001). Among FISH positive patients, 78% were IGHV mutated and 22% were IGHV unmated. Conclusion FISH is a critical molecular genetic detection method with higher sensitivity than chromosome karyotype analysis, which can provide rational guidance for the prognosis evaluation and treatment of CLL patients.

Key words: Chronic lymphocytic leukemia, Fluorescence in situ hybridization, Cytogenetics, Prognosis, Chromosome karyotype

中图分类号: 

  • R733.7
[1] 中华医学会血液学分会, 中国抗癌协会血液肿瘤专业委员会. 中国慢性淋巴细胞白血病/小淋巴细胞淋巴瘤的诊断与治疗指南(2015年版)[J]. 中华血液学杂志, 2015, 36(10): 809-813.
[2] 中华医学会血液学分会白血病淋巴瘤学组, 中国抗癌协会血液肿瘤专业委员会中国慢性淋巴细胞白血病工作组. 中国慢性淋巴细胞白血病/小淋巴细胞淋巴瘤的诊断与治疗指南(2018年版)[J]. 中华血液学杂志, 2018, 39(5): 353-358.
[3] Yun XY, Zhang Y, Wang X. Recent progress of prognostic biomarkers and risk scoring systems in chronic lymphocytic leukemia [J]. Biomark Res, 2020, 8: 40. doi: 10.1186/s40364-020-00222-3. eCollection 2020.
[4] Yang S, Varghese AM, Sood N, et al. Ethnic and geographic diversity of chronic lymphocytic leukaemia [J]. Leukemia, 2021, 35(2): 433-439.
[5] Yang S, Gale RP, Shi H, et al. Is there an epidemic of chronic lymphocytic leukemia(CLL)in China [J]. Leuk Res, 2018, 73:16-20. doi: 10.1016/j.leukres.2018.08.011.
[6] Pérez-Carretero C, González-Gascón-Y-Marín I, Rodríguez-Vicente AE, et al. The evolving landscape of chronic lymphocytic leukemia on diagnosis, prognosis and treatment [J]. Diagnostics(Basel), 2021, 11(5): 853. doi: 10.3390/diagnostics11050853.
[7] Suzuki R. Molecular pathogenesis and treatment of chronic lymphocytic leukemia [J]. Rinsho Ketsueki,2021, 62(8):1085-1093.
[8] Delgado J, Nadeu F, Colomer D, et al. Chronic lymphocytic leukemia: from molecular pathogenesis to novel therapeutic strategies [J]. Haematologica, 2020, 105(9): 2205-2217. doi: 10.3324/haematol.2019.236000.
[9] 荆源, 林樉, 王芳婷, 等. 荧光原位杂交技术检测43例慢性淋巴细胞白血病患者基因异常[J]. 中国实验血液学杂志, 2018, 26(4): 1038-1043.
[10] 张海英, 杨艳丽, 赵强, 等. 荧光原位杂交技术检测慢性淋巴细胞白血病分子遗传学异常[J]. 中国实验血液学杂志, 2020, 28(5): 1474-1479.
[11] Baliakas P, Jeromin S, Iskas M, et al. Cytogenetic complexity in chronic lymphocytic leukemia: definitions, associations, and clinical impact [J]. Blood, 2019, 133(11): 1205-1216.
[12] Leeksma AC, Baliakas P, Moysiadis T, et al. Genomic arrays identify high-risk chronic lymphocytic leukemia with genomic complexity: a multicenter study [J]. Haematologica, 2021, 106(1): 87-97.
[13] Tari K, Shamsi Z, Reza Ghafari H, et al. The role of the genetic abnormalities, epigenetic and microRNA in the prognosis of chronic lymphocytic leukemia [J]. Exp Oncol, 2018, 40(4): 261-267.
[14] Stefaniuk P, Onyszczuk J, Szymczyk A, et al. Therapeutic options for patients with TP53 deficient chronic lymphocytic leukemia: narrative review [J]. Cancer Manag Res, 2021, 13: 1459-1476. doi: 10.2147/CMAR.S283903.
[15] Yuan YY, Zhu HY, Wu JZ, et al. The percentage of cells with 17p deletion and the size of 17p deletion subclones show prognostic significance in chronic lymphocytic leukemia [J]. Genes Chromosomes Cancer, 2019, 58(1): 43-51.
[16] 王婷玉, 易树华, 王轶, 等. 氟达拉滨和环磷酰胺联合利妥昔单抗(FCR方案)一线治疗慢性淋巴细胞白血病43例临床分析[J]. 中华血液学杂志, 2021, 42(7): 543-548.
[17] Chauzeix J, Pastoret C, Donaty L, et al. A reduced panel of eight genes(ATM, SF3B1, NOTCH1, BIRC3, XPO1, MYD88, TNFAIP3, and TP53)as an estimator of the tumor mutational burden in chronic lymphocytic leukemia [J]. Int J Lab Hematol, 2021, 43(4): 683-692.
[18] Zou YX, Tang HN, Zhang J, et al. Low prevalence and independent prognostic role of del(11q)in Chinese patients with chronic lymphocytic leukemia [J]. Transl Oncol, 2021, 14(10): 101176. doi: 10.1016/j.tranon.2021.101176.
[19] Aitken MJL, Lee HJ, Post SM, et al. Emerging treatment options for patients with p53-pathway-deficient CLL [J]. Ther Adv Hematol, 2019, 10: 2040620719891356. doi: 10.1177/2040620719891356.
[20] Bagacean C, Tempescul A, Ternant D, et al. 17p deletion strongly influences rituximab elimination in chronic lymphocytic leukemia [J]. J Immunother Cancer, 2019, 7(1):22. doi: 10.1186/s40425-019-0509-0.
[21] Horna P, Pearce KE, Ketterling RP, et al. Recurrent chromosomal abnormalities in tissues involved by chronic lymphocytic leukemia/small lymphocytic lymphoma [J]. Am J Clin Pathol, 2021, aqab128. doi: 10.1093/ajcp/aqab128.
[22] Srinivasan VK, Naseem S, Varma N, et al. Genomic alterations in chronic lymphocytic leukemia and their correlation with clinico-hematological parameters and disease progression [J]. Blood Res, 2020, 55(3): 131-138.
[23] 吕瑞, 李增军, 李姮, 等. FISH检测12号染色体三体阳性慢性淋巴细胞白血病70例临床分析[J]. 中华血液学杂志, 2018, 39(5): 387-391.
[24] Tsagiopoulou M, Chapaprieta V, Duran-Ferrer M, et al. Chronic lymphocytic leukemias with trisomy 12 show a distinct DNA methylation profile linked to altered chromatin activation [J]. Haematologica, 2020, 105(12): 2864-2867.
[25] Wang Y, Achenbach SJ, Rabe KG, et al. Cause of death in patients with newly diagnosed chronic lymphocytic leukemia(CLL)stratified by the CLL-International Prognostic Index [J]. Blood Cancer J, 2021, 11(8): 140. doi: 10.1038/s41408-021-00532-1.
[26] Skórka K, Chojnacki M, Masternak M, et al. The predominant prognostic significance of NOTCH1 Mutation Defined by Emulsion PCR in Chronic Lymphocytic Leukemia [J]. Cancer Manag Res, 2021, 13: 3663-3674. doi: 10.2147/CMAR.S302245. eCollection 2021.
[27] Shetty D, Jain H, Rohil Y, et al. Role of cytogenetic abnormalities detected by fluorescence in situ hybridization as a prognostic marker: Pathogenesis & clinical course in patients with B-chronic lymphocytic leukaemia [J]. Indian J Med Res, 2021, 153(4): 475-483.
[28] Rozovski U, Keating MJ, Estrov Z. Why is the immunoglobulin heavy chain gene mutation status a prognostic Indicator in chronic lymphocytic leukemia [J]. Acta Haematol, 2018, 140(1):51-54.
[29] Bagnara D, Tang C, Brown JR, et al. Post-transformation IGHV-IGHD-IGHJ mutations in chronic lymphocytic leukemia B cells: implications for mutational mechanisms and impact on clinical course [J]. Front Oncol, 2021, 11: 640731. doi: 10.3389/fonc.2021.640731. eCollection 2021.
[30] Basabaeen AA, Abdelgader EA, BaHashwan OS, et al. Combined analysis of ZAP-70 and CD38 expression in sudanese patients with B-cell chronic lymphocytic leukemia [J]. BMC Res Notes, 2019, 12(1): 282. doi: 10.1186/s13104-019-4319-8.
[31] Hu B, Patel KP, Chen HC, et al. Association of gene mutations with time-to-first treatment in 384 treatment-naive chronic lymphocytic leukaemia patients [J]. Br J Haematol, 2019, 187(3): 307-318.
[32] Monti P, Lionetti M, De Luca G, et al. Time to first treatment and P53 dysfunction in chronic lymphocytic leukaemia: results of the O-CLL1 study in early stage patients [J]. Sci Rep, 2020, 10(1):18427. doi: 10.1038/s41598-020-75364-3.
[1] 郑苏,陈述花,李华,邓劼,陈春红,王晓慧,冯卫星,韩萧迪,张雨佳,李娜,李莫,方方. 脑电变化和BASED评分与54例婴儿痉挛症促肾上腺皮质激素疗效的相关性[J]. 山东大学学报 (医学版), 2022, 60(9): 91-96.
[2] 王丽慧,高敏,孔北华. 子宫血管肉瘤2例报告并文献复习[J]. 山东大学学报 (医学版), 2022, 60(9): 108-112.
[3] 高中霞,张铭,樊明德,谭晨阳,王梦迪,王超,樊跃飞,丁守銮,王成伟. 伽玛刀治疗81例肺癌脑转移瘤的疗效及预后因素[J]. 山东大学学报 (医学版), 2022, 60(8): 44-49.
[4] 贺士卿,李皖皖,董书晴,牟婧怡,刘宇莹,魏思雨,刘钊,张家新. 基于数据库构建乳腺癌焦亡相关基因的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(8): 34-43.
[5] 张玉凤,徐敏,邢秀丽,逄曙光,户克庆. 689例非ST段抬高型心肌梗死患者的临床流行病学特征[J]. 山东大学学报 (医学版), 2022, 60(7): 118-122.
[6] 李琳琳,王凯. 基于生物信息学预测肝细胞癌预后基因[J]. 山东大学学报 (医学版), 2022, 60(5): 50-58.
[7] 宋敏,周玉侠,高璐,刘娜,王菊,古晋,张艳萍. 1例6 q三体嵌合胎儿的产前诊断[J]. 山东大学学报 (医学版), 2022, 60(5): 109-113.
[8] 郑昊天,王光辉,赵小刚,王亚东,曾榆凯,杜贾军. 基于数据库LKB1突变肺腺癌DNA异常甲基化位点构建的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(3): 51-58.
[9] 孙振国,田辉. 加速康复外科指导下微创食管癌切除术流程优化之齐鲁实践[J]. 山东大学学报 (医学版), 2022, 60(11): 33-37.
[10] 朱永村,赵修世,孙楠楠,姚志刚,周星辰,牟坤. 前列腺透明细胞腺癌3例报道并文献复习[J]. 山东大学学报 (医学版), 2022, 60(11): 102-107.
[11] 时萧寒,李华玉,李峰. 接受Stupp方案治疗的老年胶质母细胞瘤患者预后的影响因素[J]. 山东大学学报 (医学版), 2022, 60(10): 42-48.
[12] 陈立晓,英信江,陈歆维,王菲,孙臻峰,董频. 下咽鳞癌蛋白质谱鉴定及预后靶分子筛选[J]. 山东大学学报 (医学版), 2021, 59(9): 140-147.
[13] 褚晏,刘端瑞,朱文帅,樊荣,马晓丽,汪运山,郏雁飞. DNA甲基化转移酶在胃癌中的表达及其临床意义[J]. 山东大学学报 (医学版), 2021, 59(7): 1-9.
[14] 陈丽宇,肖娟,吕仙忠,段宝敏,洪凡真. 影响孕产妇下肢深静脉血栓预后的危险因素分析[J]. 山东大学学报 (医学版), 2021, 59(7): 38-42.
[15] 田瑶天,王宝,李叶琴,王滕,田力文,韩波,王翠艳. 基于可解释性心脏磁共振参数的机器学习模型预测儿童心肌炎的预后[J]. 山东大学学报 (医学版), 2021, 59(7): 43-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .
[2] 吕龙飞,李林,李树海,亓磊,鲁铭,程传乐,田辉. 腔镜下细针导管空肠造瘘在微创McKeown食管癌切除术中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 77 -81 .
[3] 邵海港, 王璇, 王青. 山东地区人下颌第一前磨牙根管系统解剖研究[J]. 山东大学学报(医学版), 2014, 52(9): 85 -89 .
[4] 李洧,李道卫,叶茜,高顺翠,姜淑娟. 经支气管镜针吸活检在纵隔疾病诊断中的价值[J]. 山东大学学报(医学版), 2008, 46(11): 1063 -1065 .
[5] 姜保东,马祥兴,王青,王茜,冯晓源,李克,于富华 . 脑CT静脉造影扫描时相及重建层厚的选择[J]. 山东大学学报(医学版), 2008, 46(11): 1084 -1086 .
[6] 王旭平,赵玲,冯玉新,商林珊,刘金成,曹伟朋,朱晓音,辛华. 绞股蓝总苷对谷氨酸诱导的胎鼠大脑皮层神经元氧化性损伤保护机制的研究[J]. 山东大学学报(医学版), 2006, 44(6): 564 -567 .
[7] 王学萍,杨洪玲. 洛汀新治疗高血压50例报告[J]. 山东大学学报(医学版), 2007, (2): 213 .
[8] 唐芳1,2 ,张颖倩3 ,王志强4 ,康殿民4 ,王洁贞1 ,薛付忠1 . 自然疫源性疾病疫源地空间结构的二维
最小生成树模型及其应用
[J]. 山东大学学报(医学版), 2009, 47(01): 106 -110 .
[9] 黄圣运,张东升,张世周,刘桂军,赵跃然,王来成,刘义庆 . 重组表达载体pIRES-CD、pIRES-TK的构建及其在ACC-2细胞中的表达[J]. 山东大学学报(医学版), 2007, 45(2): 117 -123 .
[10] 李玉亮,王永正,王晓华,张福君,朱立东,张万明,李 征,李振家,张开贤 . 动脉灌注吉西他滨联合125I粒子胰腺内植入治疗进展期胰腺癌[J]. 山东大学学报(医学版), 2007, 45(4): 393 -396 .