您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (5): 73-81.doi: 10.6040/j.issn.1671-7554.0.2020.1534

• 基础医学 • 上一篇    下一篇

沉默LncRNA H19通过调节神经生长因子抑制心肌梗死后交感神经重构

张学丽,郑璐,王瑜,王康,闫素华   

  1. 山东大学附属千佛山医院心内科, 山东 济南 250014
  • 出版日期:2021-05-20 发布日期:2021-06-01
  • 通讯作者: 闫素华. E-mail:yansuhua296@163.com
  • 基金资助:
    国家自然科学基金(81870253);泰山学者岗位建设基金(闫素华);山东第一医科大学学术提升计划(2019QL012)

Knockdowa of LncRNA H19 inhibits sympathetic nerve remodeling after myocardial infarction by regulating nerve growth factor

ZHANG Xueli, ZHENG Lu, WANG Yu, WANG Kang, YAN Suhua   

  1. Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong, China
  • Online:2021-05-20 Published:2021-06-01

摘要: 目的 探讨H19与神经生长因子(NGF)在心肌梗死(MI)后室性快速性心律失常(VAs)发生过程中的作用与调控关系。 方法 采用左冠状动脉结扎法建立大鼠MI模型。(1)将14只健康SD大鼠分为MI组和假手术组(sham组),每组7只,采用qRT-PCR法检测MI后7d长链非编码RNA H19(LncRNA H19)的表达;(2)将32只大鼠随机分为假手术+对照病毒组(sham+NC组)、假手术+沉默病毒组(sham+siH19组)、MI+对照病毒组(MI+NC组)、MI+沉默病毒组(MI+siH19组),每组8只,在MI手术当天,将H19沉默慢病毒或对照病毒注射到左心室心肌,在MI后7 d处死之前,进行电生理检查,取出心脏,分别采用Western blotting、qRT-PCR和免疫荧光等方法检测H19的表达及其对NGF、神经重构指标酪氨酸羟化酶(TH)、生长相关蛋白43(GAP43)及心律失常易感性的影响;(3)将24只大鼠随机分为MI+NC组、MI+siH19组和MI+siH19+LV-NGF组,每组8只,进行回复实验,采用Western blotting、免疫荧光法检测NGF、TH和GAP43的表达。 结果 大鼠MI 7 d后,H19表达上调(P<0.01);沉默H19后,免疫荧光结果显示,大鼠MI后TH、GAP43的阳染面积下降(P<0.001);程序性电刺激显示, MI后VAs的易感性降低(P<0.001);沉默H19可以有效抑制NGF的表达(Z=-2.402 P=0.016),而且沉默H19对交感神经重构的抑制作用也可被过表达的NGF改善( PTH<0.001,PGAP43=0.001)。 结论 MI后沉默H19可通过调节NGF的表达而抑制交感神经重构,从而降低MI后心律失常的发生率。

关键词: 心肌梗死, 交感神经重构, 室性心律失常, LncRNA H19, 神经生长因子

Abstract: Objective To explore the roles of H19 and nerve growth factor(NGF)in the development of ventricular arrhythmias(VAs)after myocardial infarction(MI). Methods MI rat models were established by left coronary artery occlusion. (1)A total of 14 healthy Sprague Dawley(SD)rats were randomly divided into the MI group and sham group, with 7 rats in each group. Seven days after MI was induced, the rats were sacrificed to determine the H19 expression with qRT-PCR. (2)A total of 32 rats were randomly divided into 4 groups: sham+NC group, sham+siH19 group, MI+NC group and MI+siH19 group, with 8 rats in each group. H19-siRNA or the control virus was injected into the left ventricular myocardium of the rats. Programmed electrical stimulation was performed 7 days after MI was induced to observe the susceptibility to VAs. The effects of H19 on NGF, tyrosine hydroxylase(TH)and growth-associated protein 43(GAP43)were detected with qRT-PCR, Western blotting and immunofluorescence staining. (3)A total of 24 rats were randomly divided into the MI+NC group, MI+siH19 group and MI+siH19+LV-NGF group for rescue test, with 8 rats in each group. The expressions of NGF, TH and GAP43 were detected with Western blotting and immunofluorescence staining. Results The expression of H19 were up-regulated 7 days after MI was induced(P<0.001). H19 knockdown suppressed the positive staining area of TH and GAP43(P<0.001), decreased the susceptibility to VAs(P<0.01), and inhibited the expression of NGF(Z=-2.402, P=0.016). The inhibitory effect of H19 knockdown on sympathetic remodeling could be saved by overexpressed NGF(PTH<0.001, PGAP43=0.001). Conclusion H19 knockdown after myocardial infarction can inhibit sympathetic nerve remodeling by regulating the expressiou of NGF, thus reducing the incidence of arrhythmia.

Key words: Myocardial infarction, Sympathetic remodeling, Ventricular arrhythmias, LncRNA H19, Nerve growth factor

中图分类号: 

  • R541
[1] Pokorny J, Staněk V, Vrána M. Sudden cardiac death thirty years ago and at present. The role of autonomic disturbances in acute myocardial infarction revisited [J]. Physiol Res, 2011, 60(5): 715-728.
[2] Chen PS, Chen LS, Cao JM, et al. Sympathetic nerve sprouting, electrical remodeling and the mechanisms of sudden cardiac death [J]. Cardiovasc Res, 2001,50(2): 409-416.
[3] Wang Y, Xuan YL, Hu HS, et al. Risk of ventricular arrhythmias after myocardial infarction with diabetes associated with sympathetic neural remodeling in rabbits [J]. Cardiology, 2012, 121(1): 1-9.
[4] 马金, 陈秋雄, 吕渭辉. 神经重构在心肌梗死后心律失常中的作用及机制[J]. 心血管病学进展, 2019, 40(2): 260-263. MA Jin, CHEN Qiuxiong, LYU Weihui. Nerve remodeling in arrhythmia after myocardial infarction [J]. Advances in Cardiovascular Diseases, 2019, 40(2): 260-263.
[5] Hasan W, Jama A, Donohue T, et al. Sympathetic hyperinnervation and inflammatory cell NGF synthesis following myocardial infarction in rats [J]. Brain Res, 2006, 1124(1): 142-154.
[6] Hu H, Xuan Y, Wang Y, et al. Targeted NGF siRNA delivery attenuates sympathetic nerve sprouting and deteriorates cardiac dysfunction in rats with myocardial infarction [J]. PLoS One, 2014, 9(4): e95106. doi: 10.1371/journal.pone.0095106.
[7] Jathar S, Kumar V, Srivastava J, et al. Technological developments in lncRNA biology [J]. Adv Exp Med Biol, 2017, 1008:283-323. doi: 10.1007/978-981-10-5203-3_10.
[8] Wang C, Wang L, Ding Y, et al. LncRNA structural characteristics in epigenetic regulation [J]. Int J Mol Sci, 2017, 18(12): 2659.
[9] Wieczorek E, Reszka E. mRNA, microRNA and lncRNA as novel bladder tumor markers [J]. Clin Chim Acta, 2018, 477:141-153. doi:10.1016/j.cca.2017.12.009.
[10] Li H, Li J, Jia S, et al. miR675 upregulates long noncoding RNA H19 through activating EGR1 in human liver cance [J]. Oncotarget, 2015, 6(31): 31958-31984.
[11] Marquardt JU, Fischer K, Baus K, et al. Sirtuin-6-dependent genetic and epigenetic alterations are associated with poor clinical outcome in hepatocellular carcinoma patients [J]. Hepatology, 2013, 58(3): 1054-1064.
[12] Tao SC, Rui BY, Wang QY, et al. Extracellular vesicle-mimetic nanovesicles transport LncRNA-H19 as competing endogenous RNA for the treatment of diabetic wounds [J]. Drug Deliv, 2018, 25(1): 241-255.
[13] Wang JX, Zhang XJ, Li Q, et al. MicroRNA-103/107 regulate programmed necrosis and myocardial ischemia/reperfusion injury through targeting FADD [J]. Circ Res, 2015, 117(4): 352-363.
[14] Liu L, An X, Li Z, et al. The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy [J]. Cardiovasc Res, 2016, 111(1): 56-65.
[15] Greco S, Zaccagnini G, Perfetti A, et al. Long noncoding RNA dysregulation in ischemic heart failure [J]. J Transl Med, 2016, 14(1): 183.
[16] Yin J, Hu HS, Li XL, et al. Inhibition of Notch signaling pathway attenuates sympathetic hyperinnervation together with the augmentation of M2 macrophages in rats post-myocardial infarction [J]. Am J Physiol Cell Physiol, 2016, 310(1): C41-C53.
[17] Lee TM, Lai PY, Chang NC. Effect of N-acetylcysteine on sympathetic hyperinnervation in post-infarcted rat hearts [J]. Cardiovasc Res, 2010, 85(1): 137-146.
[18] Yin J, Wang Y, Hu H, et al. P2X7 receptor inhibition attenuated sympathetic nerve sprouting after myocardial infarction via the NLRP3/IL-1β pathway [J]. J Cell Mol Med, 2017, 21(11): 2695-2710.
[19] Shi Y, Li Y, Yin J, et al. A novel sympathetic neuronal GABAergic signalling system regulates NE release to prevent ventricular arrhythmias after acute myocardial infarction [J]. Acta Physiol(Oxf), 2019, 227(2): e13315.
[20] Wang Y, Yin J, Wang C, et al. Microglial Mincle receptor in the PVN contributes to sympathetic hyperactivity in acute myocardial infarction rat [J]. J Cell Mol Med, 2019, 23(1): 112-125.
[21] Tang J, Cui X, Caranasos TG, et al. Heart repair using nanogel-encapsulated human cardiac stem cells in mice and pigs with myocardial infarction [J]. ACS nano, 2017, 11(10): 9738-9749.
[22] Voroshilovsky O, Qu Z, Lee MH, et al. Mechanisms of ventricular fibrillation induction by 60-Hz alternating current in isolated swine right ventricle [J]. Circulation, 2000, 102(13): 1569-1574.
[23] Reichardt LF. Neurotrophin-regulated signalling pathways [J]. Philos Trans R Soc Lond B Biol Sci, 2006, 361(1473): 1545-1564.
[24] Zhou S, Chen LS, Miyauchi Y, et al. Mechanisms of cardiac nerve sprouting after myocardial infarction in dogs [J]. Circ Research, 2004, 95(1): 76-83.
[25] Waterston RH, Lindblad-Toh K, Birney E, et al. Initial sequencing and comparative analysis of the mouse genome [J]. Nature, 2002, 420(6915): 520-562.
[26] Wahlestedt C. Targeting long non-coding RNA to therapeutically upregulate gene expression [J]. Nat Rev Drug Discov, 2013, 12(6): 433-446.
[27] Schmitz SU, Grote P, Herrmann BG. Mechanisms of long noncoding RNA function in development and disease [J]. Cell Mol Life Sci, 2016, 73(13): 2491-2509.
[28] Batista PJ, Chang HY. Long noncoding RNAs: cellular address codes in development and disease [J]. Cell, 2013, 152(6): 1298-1307.
[29] Ballantyne MD, McDonald RA, Baker AH. lncRNA/MicroRNA interactions in the vasculature [J]. Clin Pharmacol Ther, 2016, 99(5): 494-501.
[30] García-Padilla C, Domínguez JN, Aránega AE, et al. Differential chamber-specific expression and regulation of long non-coding RNAs during cardiac development [J]. Biochim Biophys Acta Gene Regul Mech, 2019, 1862(10): 194435.
[31] Viereck J, Bührke A, Foinquinos A, et al. Targeting muscle-enriched long non-coding RNA H19 reverses pathological cardiac hypertrophy [J]. Eur Heart J, 2020, 41(36): 3462-3474.
[32] Omura J, Habbout K, Shimauchi T, et al. Identification of Long Noncoding RNA H19 as a new biomarker and therapeutic target in right ventricular failure in pulmonary arterial hypertension [J]. Circulation, 2020, 142(15): 1464-1484.
[33] Zhang X, Cheng L, Xu L, et al. The lncRNA, H19 mediates the protective effect of hypoxia postconditioning against hypoxia-reoxygenation injury to senescent cardiomyocytes by targeting microRNA-29b-3p [J]. Shock, 2019, 52(2): 249-256.
[34] Hadji F, Boulanger MC, Guay SP, et al. Altered DNA methylation of Long Noncoding RNA H19 in calcific aortic valve disease promotes mineralization by silencing NOTCH1 [J]. Circulation, 2016, 134(23): 1848-1862.
[1] 徐宁宇 王磊 郝恩魁 苏国海. STEMI患者急诊PCI前口服阿托伐他汀对炎症介质及左心室功能的影响[J]. 山东大学学报(医学版), 2209, 47(6): 69-72.
[2] 刘东,朱冬昀,彭长亮,张程,赵杰,高春正. 脊髓损伤修复的复合透明质酸水凝胶支架的构建及其评价[J]. 山东大学学报(医学版), 2017, 55(9): 53-59.
[3] 高建步,杨守忠,李玉东,乔崇,张松雨. 南阳地区某医院急性心肌梗死患者院内用药10年变化趋势[J]. 山东大学学报(医学版), 2017, 55(5): 66-69.
[4] 谈红,孟楠,晋群,苏莉,张夏晓,陈英剑,郝哲,刘晓红. 不同剂量培哚普利对兔急性心肌梗死后内皮祖细胞及心功能的影响[J]. 山东大学学报(医学版), 2017, 55(2): 55-60.
[5] 李晓宁,崔连群. 急性心肌梗死合并多支血管病变患者非梗死相关动脉处理的时机[J]. 山东大学学报(医学版), 2016, 54(8): 50-54.
[6] 史蕊,孙佩,王璐璐,丁琳,夏金,王燕,逄曙光. 鼠神经生长因子联合维生素D、甲钴胺治疗糖尿病周围神经病变的临床观察[J]. 山东大学学报(医学版), 2016, 54(4): 64-67.
[7] 胡浩然,袁梦,梁丽宁,季宪飞,李涛,陈永,刘福利,边红军,周轶,胡波,钟霞,商德亚. 心肌缺血后适应循环时间对急诊经皮冠状动脉介入治疗患者的影响[J]. 山东大学学报(医学版), 2016, 54(2): 57-62.
[8] 张东青, 王勇, 陈守臻, 朱耀丰, 史本康. 糖尿病大鼠尿道α1肾上腺素能受体与神经生长因子表达的改变及其对尿道功能的影响[J]. 山东大学学报(医学版), 2015, 53(9): 30-34.
[9] 侯胜男, 崔连群. 侧支循环对急性心肌梗死患者近期预后的影响[J]. 山东大学学报(医学版), 2015, 53(12): 47-50.
[10] 刘正琴, 吴树明, 庞昕焱. 亚砷酸导致恶性心律失常1例[J]. 山东大学学报(医学版), 2015, 53(11): 95-96.
[11] 李筱宁. 急性心肌梗死患者院前急救护理体会[J]. 山东大学学报(医学版), 2014, 52(Z2): 148-148.
[12] 孙雅琦. 负荷剂量瑞舒伐他汀对老年急性心肌梗死介入治疗患者血浆N-端脑利钠肽前体的影响[J]. 山东大学学报(医学版), 2014, 52(Z1): 225-226.
[13] 周一冲1,张芮2,冯永强1,冯璋1,王一兵1. 神经生长因子前体在病理性瘢痕中的表达[J]. 山东大学学报(医学版), 2014, 52(5): 92-95.
[14] 徐敏,庄向华,孙爱丽,倪一虹,孙福敦,陈诗鸿. 高糖对RSC96雪旺细胞的损伤机制[J]. 山东大学学报(医学版), 2014, 52(5): 44-48.
[15] 屈福超,王爱红,孙永乐,王勇,苑海涛,张玉英. 瑞舒伐他汀改善大量饮酒对急性心肌梗死大鼠血管新生的影响[J]. 山东大学学报(医学版), 2014, 52(4): 22-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24 -31 .
[2] 郭志华,赵大庆,邢园,王薇,梁乐平,杨静,赵倩倩. Ⅰ期端端吻合术治疗重度颈段气管狭窄临床分析[J]. 山东大学学报 (医学版), 2020, 1(7): 72 -76 .
[3] 吕龙飞,李林,李树海,亓磊,鲁铭,程传乐,田辉. 腔镜下细针导管空肠造瘘在微创McKeown食管癌切除术中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 77 -81 .
[4] 张娟,张璐嘉,肖伟,李顺平. 住院医师规范化培训学员压力知觉与留职意愿及影响因素[J]. 山东大学学报 (医学版), 2020, 1(7): 108 -114 .
[5] 李新钢,张鑫,陈安静. 当代脑计划研究进展[J]. 山东大学学报 (医学版), 2020, 1(8): 5 -9, 21 .
[6] 尹义龙,袭肖明,孟宪静. 阿尔兹海默病的智能诊断方法[J]. 山东大学学报 (医学版), 2020, 1(8): 14 -21 .
[7] 刘树伟,娄云霞,汤煜春. 4D数字脑图谱的构建、不对称性及遗传倾向[J]. 山东大学学报 (医学版), 2020, 1(8): 28 -33 .
[8] 王剑,周文婧,薛知易,刘晓菲. 脑胶质母细胞瘤模型研究概况及类脑模型的研发应用[J]. 山东大学学报 (医学版), 2020, 1(8): 74 -80 .
[9] 扈艳雯,王志媛,郁万江,赵蕙琛,韩合理,徐志鹏,马红,张玉超,刘元涛. 52例肥胖患者脂肪分布与代谢综合征及糖代谢指标的相关性[J]. 山东大学学报 (医学版), 2020, 1(8): 101 -106 .
[10] 吴刚, 王世隆, 段笑然, 汪洋, 张洪川. 外侧入路关节镜辅助微创距下关节融合[J]. 山东大学学报 (医学版), 2020, 1(8): 107 -114 .