山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (5): 73-81.doi: 10.6040/j.issn.1671-7554.0.2020.1534
张学丽,郑璐,王瑜,王康,闫素华
ZHANG Xueli, ZHENG Lu, WANG Yu, WANG Kang, YAN Suhua
摘要: 目的 探讨H19与神经生长因子(NGF)在心肌梗死(MI)后室性快速性心律失常(VAs)发生过程中的作用与调控关系。 方法 采用左冠状动脉结扎法建立大鼠MI模型。(1)将14只健康SD大鼠分为MI组和假手术组(sham组),每组7只,采用qRT-PCR法检测MI后7d长链非编码RNA H19(LncRNA H19)的表达;(2)将32只大鼠随机分为假手术+对照病毒组(sham+NC组)、假手术+沉默病毒组(sham+siH19组)、MI+对照病毒组(MI+NC组)、MI+沉默病毒组(MI+siH19组),每组8只,在MI手术当天,将H19沉默慢病毒或对照病毒注射到左心室心肌,在MI后7 d处死之前,进行电生理检查,取出心脏,分别采用Western blotting、qRT-PCR和免疫荧光等方法检测H19的表达及其对NGF、神经重构指标酪氨酸羟化酶(TH)、生长相关蛋白43(GAP43)及心律失常易感性的影响;(3)将24只大鼠随机分为MI+NC组、MI+siH19组和MI+siH19+LV-NGF组,每组8只,进行回复实验,采用Western blotting、免疫荧光法检测NGF、TH和GAP43的表达。 结果 大鼠MI 7 d后,H19表达上调(P<0.01);沉默H19后,免疫荧光结果显示,大鼠MI后TH、GAP43的阳染面积下降(P<0.001);程序性电刺激显示, MI后VAs的易感性降低(P<0.001);沉默H19可以有效抑制NGF的表达(Z=-2.402 P=0.016),而且沉默H19对交感神经重构的抑制作用也可被过表达的NGF改善( PTH<0.001,PGAP43=0.001)。 结论 MI后沉默H19可通过调节NGF的表达而抑制交感神经重构,从而降低MI后心律失常的发生率。
中图分类号:
[1] Pokorny J, Staněk V, Vrána M. Sudden cardiac death thirty years ago and at present. The role of autonomic disturbances in acute myocardial infarction revisited [J]. Physiol Res, 2011, 60(5): 715-728. [2] Chen PS, Chen LS, Cao JM, et al. Sympathetic nerve sprouting, electrical remodeling and the mechanisms of sudden cardiac death [J]. Cardiovasc Res, 2001,50(2): 409-416. [3] Wang Y, Xuan YL, Hu HS, et al. Risk of ventricular arrhythmias after myocardial infarction with diabetes associated with sympathetic neural remodeling in rabbits [J]. Cardiology, 2012, 121(1): 1-9. [4] 马金, 陈秋雄, 吕渭辉. 神经重构在心肌梗死后心律失常中的作用及机制[J]. 心血管病学进展, 2019, 40(2): 260-263. MA Jin, CHEN Qiuxiong, LYU Weihui. Nerve remodeling in arrhythmia after myocardial infarction [J]. Advances in Cardiovascular Diseases, 2019, 40(2): 260-263. [5] Hasan W, Jama A, Donohue T, et al. Sympathetic hyperinnervation and inflammatory cell NGF synthesis following myocardial infarction in rats [J]. Brain Res, 2006, 1124(1): 142-154. [6] Hu H, Xuan Y, Wang Y, et al. Targeted NGF siRNA delivery attenuates sympathetic nerve sprouting and deteriorates cardiac dysfunction in rats with myocardial infarction [J]. PLoS One, 2014, 9(4): e95106. doi: 10.1371/journal.pone.0095106. [7] Jathar S, Kumar V, Srivastava J, et al. Technological developments in lncRNA biology [J]. Adv Exp Med Biol, 2017, 1008:283-323. doi: 10.1007/978-981-10-5203-3_10. [8] Wang C, Wang L, Ding Y, et al. LncRNA structural characteristics in epigenetic regulation [J]. Int J Mol Sci, 2017, 18(12): 2659. [9] Wieczorek E, Reszka E. mRNA, microRNA and lncRNA as novel bladder tumor markers [J]. Clin Chim Acta, 2018, 477:141-153. doi:10.1016/j.cca.2017.12.009. [10] Li H, Li J, Jia S, et al. miR675 upregulates long noncoding RNA H19 through activating EGR1 in human liver cance [J]. Oncotarget, 2015, 6(31): 31958-31984. [11] Marquardt JU, Fischer K, Baus K, et al. Sirtuin-6-dependent genetic and epigenetic alterations are associated with poor clinical outcome in hepatocellular carcinoma patients [J]. Hepatology, 2013, 58(3): 1054-1064. [12] Tao SC, Rui BY, Wang QY, et al. Extracellular vesicle-mimetic nanovesicles transport LncRNA-H19 as competing endogenous RNA for the treatment of diabetic wounds [J]. Drug Deliv, 2018, 25(1): 241-255. [13] Wang JX, Zhang XJ, Li Q, et al. MicroRNA-103/107 regulate programmed necrosis and myocardial ischemia/reperfusion injury through targeting FADD [J]. Circ Res, 2015, 117(4): 352-363. [14] Liu L, An X, Li Z, et al. The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy [J]. Cardiovasc Res, 2016, 111(1): 56-65. [15] Greco S, Zaccagnini G, Perfetti A, et al. Long noncoding RNA dysregulation in ischemic heart failure [J]. J Transl Med, 2016, 14(1): 183. [16] Yin J, Hu HS, Li XL, et al. Inhibition of Notch signaling pathway attenuates sympathetic hyperinnervation together with the augmentation of M2 macrophages in rats post-myocardial infarction [J]. Am J Physiol Cell Physiol, 2016, 310(1): C41-C53. [17] Lee TM, Lai PY, Chang NC. Effect of N-acetylcysteine on sympathetic hyperinnervation in post-infarcted rat hearts [J]. Cardiovasc Res, 2010, 85(1): 137-146. [18] Yin J, Wang Y, Hu H, et al. P2X7 receptor inhibition attenuated sympathetic nerve sprouting after myocardial infarction via the NLRP3/IL-1β pathway [J]. J Cell Mol Med, 2017, 21(11): 2695-2710. [19] Shi Y, Li Y, Yin J, et al. A novel sympathetic neuronal GABAergic signalling system regulates NE release to prevent ventricular arrhythmias after acute myocardial infarction [J]. Acta Physiol(Oxf), 2019, 227(2): e13315. [20] Wang Y, Yin J, Wang C, et al. Microglial Mincle receptor in the PVN contributes to sympathetic hyperactivity in acute myocardial infarction rat [J]. J Cell Mol Med, 2019, 23(1): 112-125. [21] Tang J, Cui X, Caranasos TG, et al. Heart repair using nanogel-encapsulated human cardiac stem cells in mice and pigs with myocardial infarction [J]. ACS nano, 2017, 11(10): 9738-9749. [22] Voroshilovsky O, Qu Z, Lee MH, et al. Mechanisms of ventricular fibrillation induction by 60-Hz alternating current in isolated swine right ventricle [J]. Circulation, 2000, 102(13): 1569-1574. [23] Reichardt LF. Neurotrophin-regulated signalling pathways [J]. Philos Trans R Soc Lond B Biol Sci, 2006, 361(1473): 1545-1564. [24] Zhou S, Chen LS, Miyauchi Y, et al. Mechanisms of cardiac nerve sprouting after myocardial infarction in dogs [J]. Circ Research, 2004, 95(1): 76-83. [25] Waterston RH, Lindblad-Toh K, Birney E, et al. Initial sequencing and comparative analysis of the mouse genome [J]. Nature, 2002, 420(6915): 520-562. [26] Wahlestedt C. Targeting long non-coding RNA to therapeutically upregulate gene expression [J]. Nat Rev Drug Discov, 2013, 12(6): 433-446. [27] Schmitz SU, Grote P, Herrmann BG. Mechanisms of long noncoding RNA function in development and disease [J]. Cell Mol Life Sci, 2016, 73(13): 2491-2509. [28] Batista PJ, Chang HY. Long noncoding RNAs: cellular address codes in development and disease [J]. Cell, 2013, 152(6): 1298-1307. [29] Ballantyne MD, McDonald RA, Baker AH. lncRNA/MicroRNA interactions in the vasculature [J]. Clin Pharmacol Ther, 2016, 99(5): 494-501. [30] García-Padilla C, Domínguez JN, Aránega AE, et al. Differential chamber-specific expression and regulation of long non-coding RNAs during cardiac development [J]. Biochim Biophys Acta Gene Regul Mech, 2019, 1862(10): 194435. [31] Viereck J, Bührke A, Foinquinos A, et al. Targeting muscle-enriched long non-coding RNA H19 reverses pathological cardiac hypertrophy [J]. Eur Heart J, 2020, 41(36): 3462-3474. [32] Omura J, Habbout K, Shimauchi T, et al. Identification of Long Noncoding RNA H19 as a new biomarker and therapeutic target in right ventricular failure in pulmonary arterial hypertension [J]. Circulation, 2020, 142(15): 1464-1484. [33] Zhang X, Cheng L, Xu L, et al. The lncRNA, H19 mediates the protective effect of hypoxia postconditioning against hypoxia-reoxygenation injury to senescent cardiomyocytes by targeting microRNA-29b-3p [J]. Shock, 2019, 52(2): 249-256. [34] Hadji F, Boulanger MC, Guay SP, et al. Altered DNA methylation of Long Noncoding RNA H19 in calcific aortic valve disease promotes mineralization by silencing NOTCH1 [J]. Circulation, 2016, 134(23): 1848-1862. |
[1] | 徐宁宇 王磊 郝恩魁 苏国海. STEMI患者急诊PCI前口服阿托伐他汀对炎症介质及左心室功能的影响[J]. 山东大学学报(医学版), 2209, 47(6): 69-72. |
[2] | 刘东,朱冬昀,彭长亮,张程,赵杰,高春正. 脊髓损伤修复的复合透明质酸水凝胶支架的构建及其评价[J]. 山东大学学报(医学版), 2017, 55(9): 53-59. |
[3] | 高建步,杨守忠,李玉东,乔崇,张松雨. 南阳地区某医院急性心肌梗死患者院内用药10年变化趋势[J]. 山东大学学报(医学版), 2017, 55(5): 66-69. |
[4] | 谈红,孟楠,晋群,苏莉,张夏晓,陈英剑,郝哲,刘晓红. 不同剂量培哚普利对兔急性心肌梗死后内皮祖细胞及心功能的影响[J]. 山东大学学报(医学版), 2017, 55(2): 55-60. |
[5] | 李晓宁,崔连群. 急性心肌梗死合并多支血管病变患者非梗死相关动脉处理的时机[J]. 山东大学学报(医学版), 2016, 54(8): 50-54. |
[6] | 史蕊,孙佩,王璐璐,丁琳,夏金,王燕,逄曙光. 鼠神经生长因子联合维生素D、甲钴胺治疗糖尿病周围神经病变的临床观察[J]. 山东大学学报(医学版), 2016, 54(4): 64-67. |
[7] | 胡浩然,袁梦,梁丽宁,季宪飞,李涛,陈永,刘福利,边红军,周轶,胡波,钟霞,商德亚. 心肌缺血后适应循环时间对急诊经皮冠状动脉介入治疗患者的影响[J]. 山东大学学报(医学版), 2016, 54(2): 57-62. |
[8] | 张东青, 王勇, 陈守臻, 朱耀丰, 史本康. 糖尿病大鼠尿道α1肾上腺素能受体与神经生长因子表达的改变及其对尿道功能的影响[J]. 山东大学学报(医学版), 2015, 53(9): 30-34. |
[9] | 侯胜男, 崔连群. 侧支循环对急性心肌梗死患者近期预后的影响[J]. 山东大学学报(医学版), 2015, 53(12): 47-50. |
[10] | 刘正琴, 吴树明, 庞昕焱. 亚砷酸导致恶性心律失常1例[J]. 山东大学学报(医学版), 2015, 53(11): 95-96. |
[11] | 李筱宁. 急性心肌梗死患者院前急救护理体会[J]. 山东大学学报(医学版), 2014, 52(Z2): 148-148. |
[12] | 孙雅琦. 负荷剂量瑞舒伐他汀对老年急性心肌梗死介入治疗患者血浆N-端脑利钠肽前体的影响[J]. 山东大学学报(医学版), 2014, 52(Z1): 225-226. |
[13] | 周一冲1,张芮2,冯永强1,冯璋1,王一兵1. 神经生长因子前体在病理性瘢痕中的表达[J]. 山东大学学报(医学版), 2014, 52(5): 92-95. |
[14] | 徐敏,庄向华,孙爱丽,倪一虹,孙福敦,陈诗鸿. 高糖对RSC96雪旺细胞的损伤机制[J]. 山东大学学报(医学版), 2014, 52(5): 44-48. |
[15] | 屈福超,王爱红,孙永乐,王勇,苑海涛,张玉英. 瑞舒伐他汀改善大量饮酒对急性心肌梗死大鼠血管新生的影响[J]. 山东大学学报(医学版), 2014, 52(4): 22-25. |
|