山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (2): 34-40.doi: 10.6040/j.issn.1671-7554.0.2020.1588
李湘青,殷欣,赵雪莲,赵培庆
LI Xiangqing, YIN Xin, ZHAO Xuelian, ZHAO Peiqing
摘要: 目的 探讨帕金森病(PD)患者外周血中NK细胞亚群CD56bright的表达及其临床意义。 方法 选择2017年10月至2019年12月淄博市中心医院神经内科门诊就诊与住院治疗的PD患者56例(PD组),以及年龄、性别、生活环境相匹配的健康对照者50例(对照组),均为同期健康查体的健康中老年人。采用ELISA法检测PD组患者外周血细胞因子水平;流式细胞术分析NK细胞及其亚群百分比;Hoehn-Yahr分期量值表和帕金森病评定量表评分(UPDRS)对PD组患者进行分层,分析CD56bright NK细胞比值与PD患者疾病进程的相关性;最后,培养分选的CD56bright NK细胞亚群,进一步明确其分泌的细胞因子在两组中的差别。 结果 PD组血清中细胞因子水平明显高于对照组[IL-1β(t=2.46, P=0.015 4)、IL-6(t=3.19, P=0.001 9)、TNF-α(t=3.37, P=0.001 1)、IFN-γ(t=6.36, P<0.001)];更重要的是,PD组NK细胞(t=3.13, P=0.007 8)及CD56bright 细胞亚群(t=4.23, P<0.001)比值增高,且CD56bright 细胞亚群比值与PD疾病进程呈正相关[Hoehn-Yahr分期(t=3.79, P=0.005 2)、UPDRS评分(t=3.08, P=0.041)];分选CD56bright 细胞亚群进行培养,利用LPS刺激后发现PD组可分泌更多的细胞因子[IL-1β(t=2.89, P=0.044 6)、IL-6(t=3.15, P=0.034 7)、TNF-α(t=4.59, P=0.010 1)、IFN-γ(t=4.79, P=0.008 7)]。 结论 NK细胞及其CD56bright亚群在PD患者中高表达,CD56bright通过分泌细胞因子促进PD的疾病进程,可成为该类疾病新型诊断生物标记物与预后预测新靶点。
中图分类号:
[1] Croisier E, Moran LB, Dexter DT, et al. Microglial inflammation in the parkinsoniansubstantianigra: relationship to alpha-synuclein deposition[J]. J Neuroinflammation, 2005, 2:14.doi: 10.1186/1742-2094-2-14. [2] Markaki I, Bergstrom S, Tsitsi P, et al. Cerebrospinal fluid levels of kininogen-1 indicateearly cognitive impairment in parkinsons disease[J]. Mov Disord, 2020, 35(11):2101-2106. [3] Glass CK, Saijo K, Winner B, et al. Mechanisms underlying inflammation in neurodegeneration[J]. Cell, 2010, 140(6):918-934. [4] Baltus THL, Morelli NR, de Farias CC, et al. Association of -94 ATTG insertion/deletion NFkB1 and c.*126G>A NFkBIA genetic polymorphisms with oxidative and nitrosative stress biomarkers in Brazilian subjects with Parkinsons Disease[J]. Neurosci Lett, 2020, 740:135487.doi:10.1016/j.neulet.2020.135487. [5] Lahooti B, Chhibber T, Bagchi S, et al. Therapeutic role of inflammasome inhibitors in neurodegenerative disorders[J]. Brain Behav Immun, 2021, 91:771-783. doi: 10.1016/j.bbi.2020.11.004. [6] Jiang S, Gao H, Luo Q, et al. The correlation of lymphocyte subsets, natural killer cell, and Parkinsons disease: a meta-analysis[J]. Neurol Sci, 2017, 38(8):1373-1380. [7] Yang M, Zhou Y, Liu L, et al. Decreased A20 expression on circulating CD56(bright)NK cells contributes to a worse disease status in patients with ankylosing spondylitis[J]. Clin Exp Immunol, 2019, 198(1):1-10. [8] Ilie OD, Ciobica A, McKenna J, et al. Minireview on the relations between gut microfloraand parkinsons disease: further biochemical(oxidative stress), inflammatory, and neurological particularities[J]. Oxid Med Cell Longev, 2020, 2020:4518023.doi: 10.1155/2020/4518023. [9] Rees K, Stowe R, Patel S, et al. Helicobacter pylori eradication for Parkinsons disease[J]. Cochrane Database Syst Rev, 2011,(11):CD008453.doi:10.1002/14651858.CD008453.pub2. [10] Tan AH, Mahadeva S, Thalha AM, et al. Small intestinal bacterial overgrowth in Parkinsons disease[J]. Parkinsonism Relat Disord, 2014, 20(5):535-540. [11] 张忠霞, 马晓伟, 王彦永, 等. 帕金森病模型小鼠黑质纹状体系统氧化应激的增龄性改变[J]. 山东大学学报(医学版), 2014, 52(9): 26-29. ZHANG Zhongxia, MA Xiaowei, WANG Yanyong, et al. Impact of aging on the nigro-strital oxidative stress in a mice model of Parkinsons disease[J].Journal of Shandong University(Health Sciences), 2014, 52(9): 26-29. [12] Matheoud D, Cannon T, Voisin A, et al. Intestinal infection triggers Parkinsons disease-like symptoms in Pink1(-/-)mice[J]. Nature, 2019, 571(7766):565-569. [13] 陈思, 王牧川, 任楠楠,等. Parkin基因多态性与山东省汉族帕金森病发病风险的关系[J]. 山东大学学报(医学版), 2015, 53(4): 71-74. CHEN Si, WANG Muchuan, REN Nannan, et al. Relationship between polymorphisms of Parkin gene and the risk of Parkinsons disease in Han nationality of Shandong Province[J]. Journal of Shandong University(Health Sciences), 2015, 53(4): 71-74. [14] Hirsch EC, Hunot S. Neuroinflammation in Parkinsons disease: a target for neuroprotection?[J]. Lancet Neurol, 2009, 8(4):382-397. [15] Teismann P, Ferger B. Inhibition of the cyclooxygenase isoenzymes COX-1 and COX-2 provide neuroprotection in the MPTP-mouse model of Parkinsons disease[J]. Synapse, 2001, 39(2):167-174. [16] Qin XY, Zhang SP, Cao C, et al. Aberrations in peripheral inflammatory cytokine levels in P arkinsondisease: asystematic review and meta-analysis[J]. JAMA Neurol, 2016, 73(11):1316-1324. [17] Bokor M, Farago A, Garam T, et al. Antibody-dependent cell-mediated cytotoxicity(ADCC)in Parkinsons disease[J]. J Neurol Sci, 1993, 115(1):47-50. [18] Vandenhaute J, Wouters CH, Matthys P. Natural killer cells in systemic autoinflammatory diseases: afocus on systemic juvenile idiopathic arthritis and macrophage activation syndrome[J]. Front Immunol, 2019, 10:3089.doi:10.3389/fimmu.2019.03089. [19] Li T, Gao N, Cui W, et al. Natural killer cells and their function in Takayasus arteritis[J]. Clin Exp Rheumatol, 2020, 124(2):84-90. [20] Cooper MA, Fehniger TA, Turner SC, et al. Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright)subset[J]. Blood, 2001, 97(10):3146-3151. [21] 张伟, 王政洁, 闫越颖,等. Tim-3对早期梅毒患者外周血CD56dim NK细胞的影响及初步机制[J]. 中国免疫学杂志, 2019, 35(16):2005-2010. ZHANG Wei, WANG Zhengjie, YAN Yueying, et al. Expression of Tim-3 on peripheral CD56dim NK cells of patients with earlysyphilis and its preliminary mechanisms[J]. Chinese Journal of Immunology, 2019, 35(16):2005-2010. [22] Luci C, Gaudy-Marqueste C, Rouzaire P, et al. Peripheral natural killer cells exhibit qualitative and quantitative changes in patients with psoriasis and atopic dermatitis[J]. Br J Dermatol, 2012, 166(4):789-796. [23] Jiang W, Chai NR, Maric D, et al. Unexpected role for granzyme K in CD56bright NK cell-mediated immunoregulation of multiple sclerosis[J]. J Immunol, 2011, 187(2):781-790. |
[1] | 王福立,孙银萍,秦杰,荣建胜. DC-CIK细胞联合EGFR-TKI治疗35例老年晚期EGFR突变肺癌的效果[J]. 山东大学学报 (医学版), 2022, 60(7): 110-117. |
[2] | 孙丽娜,杜晓晓,张红娟,孟金来. 人类白细胞抗原G调控蜕膜自然杀伤细胞促进滋养细胞侵袭[J]. 山东大学学报 (医学版), 2022, 60(6): 41-45. |
[3] | 张秀芳,李沛铮,张博涵,孙丛丛,刘艺鸣. 生长分化因子15在LPS诱导的帕金森病模型中的保护作用及机制[J]. 山东大学学报 (医学版), 2022, 60(5): 1-7. |
[4] | 李涛,杨春林,杜通,李亨,王聪聪,李晓丽,段瑞生,张蓬. 糖尿病对重症肌无力NK细胞亚型及功能的影响[J]. 山东大学学报 (医学版), 2022, 60(5): 31-36. |
[5] | 赵海龙,王皓,方雨晴,毛飞,赵张宁,田祥奇,徐新荣,王敏,李秀华. 增服艾地苯醌对34例帕金森病抑郁患者的疗效观察[J]. 山东大学学报 (医学版), 2022, 60(4): 38-44. |
[6] | 刘丽雯,马俊,李沛铮,张秀芳,刘艺鸣. 128例帕金森病照料者负担及影响因素[J]. 山东大学学报 (医学版), 2022, 60(4): 45-49. |
[7] | 张阿敏,李国盛,李福海. 儿童支原体大叶性肺炎肺泡灌洗液细胞因子与局部炎症的相关性[J]. 山东大学学报 (医学版), 2022, 60(11): 82-88. |
[8] | 葛少华,丁田,刘红蕊. 2型免疫在组织修复中的作用及调控机制[J]. 山东大学学报 (医学版), 2021, 59(9): 51-56. |
[9] | 单婧,王晓秋,李大金. NK细胞参与子宫内膜异位症及其不孕的分子机制[J]. 山东大学学报 (医学版), 2021, 59(8): 8-13. |
[10] | 周溪,黄霂晗,任玉洁,邱洋. 新型冠状病毒感染与天然免疫及炎症反应[J]. 山东大学学报 (医学版), 2021, 59(5): 15-21. |
[11] | 鞠秀丽. 间充质干细胞治疗新型冠状病毒肺炎的潜在机制和研究进展[J]. 山东大学学报 (医学版), 2020, 58(3): 32-37. |
[12] | 张晓韬,何天齐,朱梅佳,唐吉友,赵张宁,毛飞,方雨晴,刘小民,马高亭,张小雨,张霄,王敏,李秀华. 艾地苯醌联合治疗帕金森病疗效的临床观察[J]. 山东大学学报 (医学版), 2019, 57(4): 34-41. |
[13] | 郭配,李秀华,张晓韬,何天齐,朱梅佳,唐吉友,赵张宁,毛飞. 伴有睡眠障碍帕金森病患者的睡眠特征及其影响因素[J]. 山东大学学报 (医学版), 2018, 56(4): 76-80. |
[14] | 马冉冉,韩琛,王朝霞,王兆朋,高誉欣,周淑萍,张月英,李小兵,刘恒铫,王恒孝. 人参总皂苷调控NK细胞活性促进5-氟尿嘧啶抗肿瘤的作用[J]. 山东大学学报 (医学版), 2018, 56(4): 43-50. |
[15] | 勾云, 周波, 魏操,陈运华, 徐利,刘芬, 张春林, 文敏. 硫辛酸对帕金森病大鼠黑质线粒体的保护作用[J]. 山东大学学报(医学版), 2017, 55(8): 18-23. |
|