您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (2): 34-40.doi: 10.6040/j.issn.1671-7554.0.2020.1588

• 临床医学 • 上一篇    下一篇

NK细胞亚群CD56bright在帕金森患者外周血中的表达及临床意义

李湘青,殷欣,赵雪莲,赵培庆   

  1. 淄博市中心医院神经内科, 山东 淄博 255036
  • 发布日期:2021-03-05
  • 通讯作者: 李湘青. E-mail:466802337@qq.com
  • 基金资助:
    国家自然科学基金(81972002);山东省自然科学基金(ZR2015HM031)

Expression and clinical significance of circulating CD56bright subset of NK cells in patients with Parkinsons disease

LI Xiangqing, YIN Xin, ZHAO Xuelian, ZHAO Peiqing   

  1. Department of Neurology, Zibo Central Hospital, Zibo 255036, Shandong, China
  • Published:2021-03-05

摘要: 目的 探讨帕金森病(PD)患者外周血中NK细胞亚群CD56bright的表达及其临床意义。 方法 选择2017年10月至2019年12月淄博市中心医院神经内科门诊就诊与住院治疗的PD患者56例(PD组),以及年龄、性别、生活环境相匹配的健康对照者50例(对照组),均为同期健康查体的健康中老年人。采用ELISA法检测PD组患者外周血细胞因子水平;流式细胞术分析NK细胞及其亚群百分比;Hoehn-Yahr分期量值表和帕金森病评定量表评分(UPDRS)对PD组患者进行分层,分析CD56bright NK细胞比值与PD患者疾病进程的相关性;最后,培养分选的CD56bright NK细胞亚群,进一步明确其分泌的细胞因子在两组中的差别。 结果 PD组血清中细胞因子水平明显高于对照组[IL-1β(t=2.46, P=0.015 4)、IL-6(t=3.19, P=0.001 9)、TNF-α(t=3.37, P=0.001 1)、IFN-γ(t=6.36, P<0.001)];更重要的是,PD组NK细胞(t=3.13, P=0.007 8)及CD56bright 细胞亚群(t=4.23, P<0.001)比值增高,且CD56bright 细胞亚群比值与PD疾病进程呈正相关[Hoehn-Yahr分期(t=3.79, P=0.005 2)、UPDRS评分(t=3.08, P=0.041)];分选CD56bright 细胞亚群进行培养,利用LPS刺激后发现PD组可分泌更多的细胞因子[IL-1β(t=2.89, P=0.044 6)、IL-6(t=3.15, P=0.034 7)、TNF-α(t=4.59, P=0.010 1)、IFN-γ(t=4.79, P=0.008 7)]。 结论 NK细胞及其CD56bright亚群在PD患者中高表达,CD56bright通过分泌细胞因子促进PD的疾病进程,可成为该类疾病新型诊断生物标记物与预后预测新靶点。

关键词: 帕金森病, NK细胞, CD56bright亚群, 疾病预后, 细胞因子

Abstract: Objective To analyze the expression and clinical significance of circulating CD56bright subset of NK cellsinpatients with Parkinsons disease(PD). Methods A total of 56 PD patients treated during Oct. 2017 and Dec. 2019 and 50 healthy controls matched in age, sex and living environment were enrolled. The levels of cytokines in the peripheral blood of PD patients were detected with ELISA; the ratios of NK cells and CD56bright subset were analyzed with flow cytometry; PD patients were stratified with Hoehn-Yahr staging scale and unified Parkinsons disease rating scale(UPDRS); the correlation between the ratio of CD56bright subset and disease progression was analyzed. Finally, CD56bright subset was selected and cultured to clarify the differences in cytokines between PD group and control group. Results The levels of cytokines in PD group were significantly higher than those in the control group[IL-1β(t=2.46, P=0.015 4), IL-6(t=3.19, P=0.001 9), TNF-α(t=3.37, P=0.001 1), IFN-γ(t=6.36, P<0.001)]. The ratio of NK cells(t=3.13, P=0.007 8)and CD56bright subset(t=4.23, P<0.001)in PD group were significantly increased. The ratio of CD56bright subset was positively correlated with the progression of PD[Hoehn-Yahr staging scale(t=3.79, P=0.005 2), UPDRS(t=3.08, P=0.041)]. PD group could secrete more cytokines than control group after LPS stimulation[IL-1β(t=2.89, P=0.044 6), IL-6(t=3.15, P=0.034 7),TNF-α(t=4.59, P=0.010 1), IFN-γ(t=4.79, P=0.008 7)]. Conclusion NK cells and CD56bright subset are highly expressed in PD patients. CD56bright subset can promote the progression of PD by secreting cytokines, and CD56bright subset can become a new biomarker for diagnosis and a new target for predicting PD prognosis.

Key words: Parkinsons disease, NK cells, CD56bright subset, Disease prognosis, Cytokines

中图分类号: 

  • R741.04
[1] Croisier E, Moran LB, Dexter DT, et al. Microglial inflammation in the parkinsoniansubstantianigra: relationship to alpha-synuclein deposition[J]. J Neuroinflammation, 2005, 2:14.doi: 10.1186/1742-2094-2-14.
[2] Markaki I, Bergstrom S, Tsitsi P, et al. Cerebrospinal fluid levels of kininogen-1 indicateearly cognitive impairment in parkinsons disease[J]. Mov Disord, 2020, 35(11):2101-2106.
[3] Glass CK, Saijo K, Winner B, et al. Mechanisms underlying inflammation in neurodegeneration[J]. Cell, 2010, 140(6):918-934.
[4] Baltus THL, Morelli NR, de Farias CC, et al. Association of -94 ATTG insertion/deletion NFkB1 and c.*126G>A NFkBIA genetic polymorphisms with oxidative and nitrosative stress biomarkers in Brazilian subjects with Parkinsons Disease[J]. Neurosci Lett, 2020, 740:135487.doi:10.1016/j.neulet.2020.135487.
[5] Lahooti B, Chhibber T, Bagchi S, et al. Therapeutic role of inflammasome inhibitors in neurodegenerative disorders[J]. Brain Behav Immun, 2021, 91:771-783. doi: 10.1016/j.bbi.2020.11.004.
[6] Jiang S, Gao H, Luo Q, et al. The correlation of lymphocyte subsets, natural killer cell, and Parkinsons disease: a meta-analysis[J]. Neurol Sci, 2017, 38(8):1373-1380.
[7] Yang M, Zhou Y, Liu L, et al. Decreased A20 expression on circulating CD56(bright)NK cells contributes to a worse disease status in patients with ankylosing spondylitis[J]. Clin Exp Immunol, 2019, 198(1):1-10.
[8] Ilie OD, Ciobica A, McKenna J, et al. Minireview on the relations between gut microfloraand parkinsons disease: further biochemical(oxidative stress), inflammatory, and neurological particularities[J]. Oxid Med Cell Longev, 2020, 2020:4518023.doi: 10.1155/2020/4518023.
[9] Rees K, Stowe R, Patel S, et al. Helicobacter pylori eradication for Parkinsons disease[J]. Cochrane Database Syst Rev, 2011,(11):CD008453.doi:10.1002/14651858.CD008453.pub2.
[10] Tan AH, Mahadeva S, Thalha AM, et al. Small intestinal bacterial overgrowth in Parkinsons disease[J]. Parkinsonism Relat Disord, 2014, 20(5):535-540.
[11] 张忠霞, 马晓伟, 王彦永, 等. 帕金森病模型小鼠黑质纹状体系统氧化应激的增龄性改变[J]. 山东大学学报(医学版), 2014, 52(9): 26-29. ZHANG Zhongxia, MA Xiaowei, WANG Yanyong, et al. Impact of aging on the nigro-strital oxidative stress in a mice model of Parkinsons disease[J].Journal of Shandong University(Health Sciences), 2014, 52(9): 26-29.
[12] Matheoud D, Cannon T, Voisin A, et al. Intestinal infection triggers Parkinsons disease-like symptoms in Pink1(-/-)mice[J]. Nature, 2019, 571(7766):565-569.
[13] 陈思, 王牧川, 任楠楠,等. Parkin基因多态性与山东省汉族帕金森病发病风险的关系[J]. 山东大学学报(医学版), 2015, 53(4): 71-74. CHEN Si, WANG Muchuan, REN Nannan, et al. Relationship between polymorphisms of Parkin gene and the risk of Parkinsons disease in Han nationality of Shandong Province[J]. Journal of Shandong University(Health Sciences), 2015, 53(4): 71-74.
[14] Hirsch EC, Hunot S. Neuroinflammation in Parkinsons disease: a target for neuroprotection?[J]. Lancet Neurol, 2009, 8(4):382-397.
[15] Teismann P, Ferger B. Inhibition of the cyclooxygenase isoenzymes COX-1 and COX-2 provide neuroprotection in the MPTP-mouse model of Parkinsons disease[J]. Synapse, 2001, 39(2):167-174.
[16] Qin XY, Zhang SP, Cao C, et al. Aberrations in peripheral inflammatory cytokine levels in P arkinsondisease: asystematic review and meta-analysis[J]. JAMA Neurol, 2016, 73(11):1316-1324.
[17] Bokor M, Farago A, Garam T, et al. Antibody-dependent cell-mediated cytotoxicity(ADCC)in Parkinsons disease[J]. J Neurol Sci, 1993, 115(1):47-50.
[18] Vandenhaute J, Wouters CH, Matthys P. Natural killer cells in systemic autoinflammatory diseases: afocus on systemic juvenile idiopathic arthritis and macrophage activation syndrome[J]. Front Immunol, 2019, 10:3089.doi:10.3389/fimmu.2019.03089.
[19] Li T, Gao N, Cui W, et al. Natural killer cells and their function in Takayasus arteritis[J]. Clin Exp Rheumatol, 2020, 124(2):84-90.
[20] Cooper MA, Fehniger TA, Turner SC, et al. Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright)subset[J]. Blood, 2001, 97(10):3146-3151.
[21] 张伟, 王政洁, 闫越颖,等. Tim-3对早期梅毒患者外周血CD56dim NK细胞的影响及初步机制[J]. 中国免疫学杂志, 2019, 35(16):2005-2010. ZHANG Wei, WANG Zhengjie, YAN Yueying, et al. Expression of Tim-3 on peripheral CD56dim NK cells of patients with earlysyphilis and its preliminary mechanisms[J]. Chinese Journal of Immunology, 2019, 35(16):2005-2010.
[22] Luci C, Gaudy-Marqueste C, Rouzaire P, et al. Peripheral natural killer cells exhibit qualitative and quantitative changes in patients with psoriasis and atopic dermatitis[J]. Br J Dermatol, 2012, 166(4):789-796.
[23] Jiang W, Chai NR, Maric D, et al. Unexpected role for granzyme K in CD56bright NK cell-mediated immunoregulation of multiple sclerosis[J]. J Immunol, 2011, 187(2):781-790.
[1] 王福立,孙银萍,秦杰,荣建胜. DC-CIK细胞联合EGFR-TKI治疗35例老年晚期EGFR突变肺癌的效果[J]. 山东大学学报 (医学版), 2022, 60(7): 110-117.
[2] 孙丽娜,杜晓晓,张红娟,孟金来. 人类白细胞抗原G调控蜕膜自然杀伤细胞促进滋养细胞侵袭[J]. 山东大学学报 (医学版), 2022, 60(6): 41-45.
[3] 张秀芳,李沛铮,张博涵,孙丛丛,刘艺鸣. 生长分化因子15在LPS诱导的帕金森病模型中的保护作用及机制[J]. 山东大学学报 (医学版), 2022, 60(5): 1-7.
[4] 李涛,杨春林,杜通,李亨,王聪聪,李晓丽,段瑞生,张蓬. 糖尿病对重症肌无力NK细胞亚型及功能的影响[J]. 山东大学学报 (医学版), 2022, 60(5): 31-36.
[5] 赵海龙,王皓,方雨晴,毛飞,赵张宁,田祥奇,徐新荣,王敏,李秀华. 增服艾地苯醌对34例帕金森病抑郁患者的疗效观察[J]. 山东大学学报 (医学版), 2022, 60(4): 38-44.
[6] 刘丽雯,马俊,李沛铮,张秀芳,刘艺鸣. 128例帕金森病照料者负担及影响因素[J]. 山东大学学报 (医学版), 2022, 60(4): 45-49.
[7] 张阿敏,李国盛,李福海. 儿童支原体大叶性肺炎肺泡灌洗液细胞因子与局部炎症的相关性[J]. 山东大学学报 (医学版), 2022, 60(11): 82-88.
[8] 葛少华,丁田,刘红蕊. 2型免疫在组织修复中的作用及调控机制[J]. 山东大学学报 (医学版), 2021, 59(9): 51-56.
[9] 单婧,王晓秋,李大金. NK细胞参与子宫内膜异位症及其不孕的分子机制[J]. 山东大学学报 (医学版), 2021, 59(8): 8-13.
[10] 周溪,黄霂晗,任玉洁,邱洋. 新型冠状病毒感染与天然免疫及炎症反应[J]. 山东大学学报 (医学版), 2021, 59(5): 15-21.
[11] 鞠秀丽. 间充质干细胞治疗新型冠状病毒肺炎的潜在机制和研究进展[J]. 山东大学学报 (医学版), 2020, 58(3): 32-37.
[12] 张晓韬,何天齐,朱梅佳,唐吉友,赵张宁,毛飞,方雨晴,刘小民,马高亭,张小雨,张霄,王敏,李秀华. 艾地苯醌联合治疗帕金森病疗效的临床观察[J]. 山东大学学报 (医学版), 2019, 57(4): 34-41.
[13] 郭配,李秀华,张晓韬,何天齐,朱梅佳,唐吉友,赵张宁,毛飞. 伴有睡眠障碍帕金森病患者的睡眠特征及其影响因素[J]. 山东大学学报 (医学版), 2018, 56(4): 76-80.
[14] 马冉冉,韩琛,王朝霞,王兆朋,高誉欣,周淑萍,张月英,李小兵,刘恒铫,王恒孝. 人参总皂苷调控NK细胞活性促进5-氟尿嘧啶抗肿瘤的作用[J]. 山东大学学报 (医学版), 2018, 56(4): 43-50.
[15] 勾云, 周波, 魏操,陈运华, 徐利,刘芬, 张春林, 文敏. 硫辛酸对帕金森病大鼠黑质线粒体的保护作用[J]. 山东大学学报(医学版), 2017, 55(8): 18-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吕龙飞,李林,李树海,亓磊,鲁铭,程传乐,田辉. 腔镜下细针导管空肠造瘘在微创McKeown食管癌切除术中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 77 -81 .
[2] 邵海港, 王璇, 王青. 山东地区人下颌第一前磨牙根管系统解剖研究[J]. 山东大学学报(医学版), 2014, 52(9): 85 -89 .
[3] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .
[4] 唐芳1,2 ,张颖倩3 ,王志强4 ,康殿民4 ,王洁贞1 ,薛付忠1 . 自然疫源性疾病疫源地空间结构的二维
最小生成树模型及其应用
[J]. 山东大学学报(医学版), 2009, 47(01): 106 -110 .
[5] 黄飞,王怀经,邢毅,高薇,李永刚,邢子英,李振中. NGF和GM1联合应用对坐骨神经损伤大鼠初级传入神经元的保护作用[J]. 山东大学学报(医学版), 2006, 44(4): 332 -335 .
[6] 李玉亮,王永正,王晓华,张福君,朱立东,张万明,李 征,李振家,张开贤 . 动脉灌注吉西他滨联合125I粒子胰腺内植入治疗进展期胰腺癌[J]. 山东大学学报(医学版), 2007, 45(4): 393 -396 .
[7] 刘海春 张剑锋 陈允震. 骨质疏松大鼠股骨生物力学特性与骨胶原质量变化的相关研究[J]. 山东大学学报(医学版), 2009, 47(5): 42 -45 .
[8] 冯复利1,魏树珍2,张永欢3,李莉1,陈融1,李瑞峰1. 胰岛素抵抗大鼠高死亡率与Klotho表达关系的研究[J]. 山东大学学报(医学版), 2010, 48(6): 5 -8 .
[9] 朱晓丽1,郭淑玲1,苏磊1,冯玉新2,袁方曙1. 蠕形螨全蛋白提取及相对分子量鉴定[J]. 山东大学学报(医学版), 2014, 52(5): 58 -62 .
[10] 王晓菊1 ,汪明明2 ,徐皖苏2 ,赵胜梅3 ,崔速南2 ,李晓迎2 ,刘春华1
. 慢性HBV活动性感染者外周血淋巴细胞
泛素mRNA的表达及临床意义

[J]. 山东大学学报(医学版), 2009, 47(02): 58 -61 .