山东大学学报(医学版) ›› 2016, Vol. 54 ›› Issue (11): 13-18.doi: 10.6040/j.issn.1671-7554.0.2015.914
袁冰,李冉冉,韩明勇
YUAN Bing, LI Ranran, HAN Mingyong
摘要: 目的 探讨转移前期原发黑色素瘤对肺组织微环境的作用及其对转移的影响。 方法 将黑色素瘤细胞B16种植于雌性Balb/c小鼠背部,建立荷瘤小鼠动物模型;通过小鼠尾静脉注射B16细胞建立转移模型;塞来昔布灌胃处理小鼠建立抗炎治疗模型。采用肺组织干湿比和HE染色分析肺组织炎症反应,应用ELISA试剂盒检测血清及细胞培养上清液中的细胞因子水平。 结果 在转移前期,与对照组小鼠相比,实验组荷瘤小鼠肺组织明显水肿,肺干湿比明显升高,两组相比差异有统计学意义(P<0.001);同时发现B16细胞易于出现在肺组织炎症细胞聚集的部位。ELISA检测结果显示,与对照组相比,实验组荷瘤小鼠血清VEGF、M-CSF和TNF-α含量明显升高,两组相比差异有统计学意义(P<0.001)。B16培养上清可以显著诱导肺组织炎症反应,与对照组相比,实验组小鼠肺组织转移瘤显著增多(P<0.001);给予抗炎药物塞来昔布处理后,与对照组相比,实验组小鼠肺组织炎症反应明显下降,肺转移瘤数目明显减少(P=0.005)。 结论 在肿瘤转移前期,原发恶性黑色素瘤能够调节肺组织微环境,诱导肺组织炎症反应并促进肺转移;塞来昔布可缓解肺组织炎症反应并抑制肺转移。
中图分类号:
[1] Huang YJ, Song N, Ding YP, et al. Pulmonary vascular destabilization in the premetastatic phase facilitates lung metastasis[J]. Cancer Res, 2009, 69(19): 7529-7537. [2] Killock D. Cell signalling: melanoma melanosomes shape the stromal niche[J]. Nat Rev Clin Oncol, 2016, 13(10): 590-591. [3] Carlini MJ, De Lorenzo MS, Puricelli L. Cross-talk between tumor cells and the microenvironment at the metastatic niche[J]. Curr Pharm Biotechnol, 2011, 12(11): 1900-1908. [4] Gerber PA, Hippe A, Buhren BA, et al. Chemokines in tumor-associated angiogenesis[J]. Biol Chem, 2009, 390(12): 1213-1223. [5] Gupta GP, Massague J. Cancer metastasis: building a framework[J]. Cell, 2006, 127(4): 679-695. [6] Huang Y, Song N, Ding Y, et al. Pulmonary vascular destabilization in the premetastatic phase facilitates lung metastasis[J]. Cancer Res, 2009, 69(19): 7529-7537. [7] Serafini P, Borrello I, Bronte V. Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression[J]. Semin Cancer Biol, 2006, 16(1): 53-65. [8] Gassmann P, Haier J, Schlüter K, et al. CXCR4 regulates the early extravasation of metastatic tumor cells in vivo[J]. Neoplasia, 2009, 11(7): 651-661. [9] Hiratsuka S, Watanabe A, Aburatani H, et al. Tumor mediated up-regulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis[J]. Nat Cell Biol, 2006, 8(12): 1369-1375. [10] Krüger A. Premetastatic niche formation in the liver: emerging mechanisms and mouse models[J]. J Mol Med(Berl), 2015, 93(11): 1193-1201. [11] Sharma SK, Chintala NK, Vadrevu SK, et al. Pulmonary alveolar macrophages contribute to the premetastatic niche by suppressing antitumor T cell responses in the lungs[J]. J Immunol, 2015, 194(11): 5529-5538. [12] Wu CF, Andzinski L, Kasnitz N, et al. The lack of type I interferon induces neutrophil-mediated pre-metastatic niche formation in the mouse lung[J]. Int J Cancer, 2015, 137(4): 837-847. [13] Yan HH, Jiang J, Pang Y, et al. CCL9 induced by TGF-β signaling in myeloid cells enhances tumor cell survival in the premetastatic organ[J]. Cancer Res, 2015, 75(24): 5283-5298. [14] Souza LE, Almeida DC, Yaochite JN, et al. Intravenous administration of bone marrow-derived multipotent mesenchymal stromal cells enhances the recruitment of CD11b+ myeloid cells to the lungs and facilitates B16-F10 melanoma colonization[J]. Exp Cell Res, 2015, 345(2): 141-149. [15] Kaplan RN, Rafii S, Lyden D. Preparing the “soil”: the premetastatic niche[J]. Cancer Res, 2006, 66(23): 11089-11093. [16] Mantovani A, Allavena P, Sica A, et al. Cancer-related inflammation[J]. Nature, 2008, 454(7203): 436-444. [17] Kulbe H, Chakravarty P, Leinster DA, et al. A dynamic inflammatory cytokine network in the human ovarian cancer microenvironment[J]. Cancer Res, 2012, 72(1): 66-75. [18] DeNardo DG, Coussens LM. Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression[J]. Breast Cancer Res, 2007, 9(4): 212. [19] Dawson MR, Duda DG, Fukumura D, et al. VEGFR1 activity independent metastasis formation[J]. Nature, 2009, 461(7262): E4-E5. [20] Solinas G, Marchesi F, Garlanda C, et al. Inflammation-mediated promotion of invasion and metastasis[J]. Cancer Metastasis Rev, 2010, 29(2): 243-248. |
[1] | 徐宁宇 王磊 郝恩魁 苏国海. STEMI患者急诊PCI前口服阿托伐他汀对炎症介质及左心室功能的影响[J]. 山东大学学报(医学版), 2209, 47(6): 69-72. |
[2] | 郝跃伟 刘雪平 赵婷婷 郑敏 王一兵. 环氧化酶2基因多态性与动脉粥样硬化缺血性脑卒中的相关性[J]. 山东大学学报(医学版), 2209, 47(6): 95-98. |
[3] | 李刚,薛皓,邱伟,赵荣荣. 脑胶质瘤抑制性免疫微环境形成机制及研究进展[J]. 山东大学学报 (医学版), 2020, 1(8): 67-73. |
[4] | 李星凯,刘战业,姜运峰,李军. 原发性中央型和周围型肺鳞癌临床病理学及预后差异[J]. 山东大学学报(医学版), 2017, 55(9): 73-78. |
[5] | 黄竹青,吴雪韦,任冬梅. 槲寄生中酚类化学成分的分离鉴定及其对A549细胞的增殖抑制活性[J]. 山东大学学报(医学版), 2017, 55(8): 35-41. |
[6] | 谭琦,訾捷,李清宝,李勇,李德才,隋润钤,孙连功,于利,王安彪. 嵌合肺动脉瓣成形术在法洛四联症患者重建右心室流出道的应用[J]. 山东大学学报(医学版), 2017, 55(8): 57-60. |
[7] | 张新科,陈英,李鹏,陈洪元,黄桂华. PEG包衣左氧氟沙星脂质体的制备及性质[J]. 山东大学学报(医学版), 2017, 55(8): 42-47. |
[8] | 曾海燕,李睿,孙新东,谢鹏,孟雪,范秉杰,李万龙,袁双虎. 局限期小细胞肺癌患者预防性脑照射后脑转移的关联分析:双中心研究[J]. 山东大学学报(医学版), 2017, 55(7): 61-66. |
[9] | 张栾,陈欧,栾云,朱晓波,陈元,王一彪. Gemigliptin对野百合碱诱导的肺动脉高压大鼠治疗作用及炎症因子的影响[J]. 山东大学学报(医学版), 2017, 55(5): 19-22. |
[10] | 曾奕明,林燕萍. 放射性125I粒子植入局部治疗支气管肺癌[J]. 山东大学学报(医学版), 2017, 55(4): 1-6. |
[11] | 刘庆华,赵娜,王成. 经支气管针吸活检术的几个常见认识误区[J]. 山东大学学报(医学版), 2017, 55(4): 30-33. |
[12] | 张华楠,王超超,张媛,徐少华,王莹,王伟. 支气管超声下经引导鞘肺活检术诊断肺周围性疾病的价值[J]. 山东大学学报(医学版), 2017, 55(4): 34-38. |
[13] | 唐曦,胡娅,徐炎华,汪春林,邱萍,王向辉. MiR- 498通过下调FOXM1抑制肺腺癌细胞上皮充质细胞转化[J]. 山东大学学报(医学版), 2017, 55(4): 39-43. |
[14] | 孙启晶,陈方方,李春晓,张才擎. PNI及HGB评估中晚期非小细胞肺癌患者预后的临床价值[J]. 山东大学学报(医学版), 2017, 55(4): 55-59. |
[15] | 张智慧,王丽丽,高华,张健,李娟,李远,武春晓,卢志明. 肺腺癌中缺氧诱导因子-1α调控程序性死亡因子配体1的表达[J]. 山东大学学报(医学版), 2017, 55(4): 65-70. |
|