您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2015, Vol. 53 ›› Issue (8): 38-43.doi: 10.6040/j.issn.1671-7554.0.2014.824

• 基础医学 • 上一篇    下一篇

纯钛钛片表面不同生物大分子涂层的比较研究

张锋, 戴杰, 任灵飞, 蒋颂瑶, 施更生   

  1. 浙江省台州医院口腔科, 浙江 临海 317000
  • 收稿日期:2014-11-14 发布日期:2015-08-10
  • 通讯作者: 施更生.E-mail:shigstz@163.com E-mail:shigstz@163.com
  • 基金资助:
    浙江省科技厅科研基金(2014C33280)

Comparative study of different biomolecule coatings on the surface of pure titanium disc

ZHANG Feng, DAI Jie, REN Lingfei, JIANG Songyao, SHI Gengsheng   

  1. Department of Stomatology, Taizhou Hospital of Zhejiang Province, Linhai 317000, Zhejiang, China
  • Received:2014-11-14 Published:2015-08-10

摘要: 目的 探讨如何在纯钛钛片表面构建不同生物大分子涂层,以期找到合适的种植体表面涂层.方法 纯钛钛片表面经打磨抛光及氧化性混酸溶液处理(酸蚀组),设为对照,接着通过层层自组装技术将Ⅰ型胶原(COL)、透明质酸(HA)、壳聚糖(CHI)和多聚谷氨酸(PGA)引入到钛片表面(涂层组).采用扫描电镜(SEM)、X射线光电子能谱(XPS)、石英晶体微量天平(QCM)和接触角试验对钛片的表面进行表征.在各种钛片表面培养成骨前体细胞,检测其早期黏附、增殖及分化的能力.结果 SEM结果显示,各组涂层的表面非常相似、平整. XPS分析发现各组钛片表面元素成分氮的含量随着组装层数的增加而不断升高.接触角实验显示在纯钛表面组装生物大分子并没有损害基底面良好的亲水性.涂层组钛片较酸蚀组明显促进了成骨细胞的早期黏附、增殖和分化.胶原组[Ti-(COL/HA)5-COL、Ti-(COL/PGA)5-COL]较壳聚糖组[Ti-(CHI/HA)5-CHI、Ti-(CHI/PGA)5-CHI]具有更高的生物活性.而Ti-(COL/HA)5-COL与Ti-(COL/PGA)5-COL相比更能促进成骨细胞的黏附、增殖和分化.结论 生物大分子COL、HA、CHI和PGA能够通过LBL技术被成功地引入到纯钛钛片表面.Ti-(COL/HA)5-COL具有较高的生物活性,可能有利于种植体的骨整合.

关键词: 壳聚糖, 层层自组装, 透明质酸, Ⅰ型胶原, 多聚谷氨酸

Abstract: Objective To construct different biomolecule coatings on the surface of pure titanium discs and to find out a proper implant coating. Methods Pure titanium disc was first ground, polished and acid-etched with a mixture of H2SO4/H2O2(acid-etched group, as the control group). Collagen type Ⅰ (COL), chitosan (CHI), hyaluronic acid (HA) and polyglutamic acid (PGA) were introduced onto this acid-etched surface using layer by layer technique (coating group). Scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), quartz crystal microbalance (QCM) and contact angle measurement were used for surface characterization. After pre-osteoblasts were seeded on the discs, cell attachment, proliferation and differentiation were evaluated. Results SEM analysis demonstrated that the surfaces of different coatings were very smooth and similar. XPS analysis showed that the nitrogen content of different surface was dramatically increased with deposition number. Contact angle measurement showed that the construction of different biomolecules on pure titanium discs did not damage the excellent wettability of the basal surface. Cell attachment, proliferation and differentiation were much stimulated in the coating groups when compared with the acid-etched group. On the other hand, COL-based coatings [Ti-(COL/HA)5-COL and Ti-(COL/PGA)5-COL] showed much higher bioactivity compared with CHI-based coatings [Ti-(CHI/HA)5-CHI and Ti-(CHI/PGA)5-CHI], and Ti-(COL/HA)5-COL coating promoted cell attachment, proliferation and differentiation much more than those of Ti-(COL/PGA)5-COL coating. Conclusion Collagen type Ⅰ, chitosan, hyaluronic acid and polyglutamic acid are successfully constructed on the titanium surface, and Ti-(COL/HA)5-COL coating shows high bioactivity and may promote implant osseointegration.

Key words: Chitosan, Collagen type Ⅰ, Polyglutamic acid, Hyaluronic acid, Layer by layer technique

中图分类号: 

  • R783.1
[1] Yoo D, Tovar N, Jimbo R, et al. Increased osseointegration effect of bone morphogenetic protein 2 on dental implants:an in vivo study[J]. J Biomed Mater Res A, 2013, 102(6):1921-1927.
[2] Park JU, Ham J, Kim S, et al. Alleviation of capsular formations on silicone implants in rats using biomembrane-mimicking coatings[J]. Acta Biomater, 2014, 10(10):4217-4225.
[3] Shibata Y, Tanimoto Y. A review of improved fixation methods for dental implants. Part I: Surface optimization for rapid osseointegration[J]. J Prosthodont Res, 2014, 59(1):20-33.
[4] Lv H, Chen Z, Yang X, et al. Layer-by-layer self-assembly of minocycline-loaded chitosan/alginate multilayer on titanium substrates to inhibit biofilm formation[J]. J Dent, 2014, 42(11):1464-1472.
[5] Sauerbrey GS. Physical use of a quartz vibrator for weighting thin layers on a microbalance[J]. Phys, 1959, 155:206.
[6] 王苗霞, 卢立春, 王长凤. 关于氨基酸溶液的酸碱性及等电点计算问题的说明[J]. 生物技术世界, 2012, 54(5):23-25.
[7] Nanci A, Wuest JD, Peru L, et al. Chemical modification of titanium surfaces for covalent attachment of biological molecules[J]. J Biomed Mater Res,1998, 40(2):324-335.
[8] Bueno Rde B, Adachi P, Castro-Raucci LM, et al. Oxidative nanopatterning of titanium surfaces promotes production and extracellular accumulation of osteopontin[J]. Braz Dent J, 2011, 22(3):179-184.
[9] Tan G, Tan Y, Ni G, et al. Controlled oxidative nanopatterning of microrough titanium surfaces for improving osteogenic activity[J]. J Mater Sci Mater Med, 2014, 25(8):1875-1884.
[10] Kikuchi M. Hydroxyapatite/collagen bone-like nanocomposite[J]. Bio Pharm Bull, 2013, 36(11):1666-1669.
[11] Singh A, Corvelli M, Unterman SA, et al. Enhanced lubrication on tissue and biomaterial surfaces through peptide-mediated binding of hyaluronic acid[J]. Nat Mater, 2014, 13(10):988-995.
[12] Liu L, He H, Zhang M, et al. Hyaluronic acid-decorated reconstituted high density lipoprotein targeting atherosclerotic lesions[J]. Biomaterials, 2014, 35(27):8002-8014.
[13] Anselme K. Osteoblast adhesion on biomaterials[J]. Biomaterials, 2000, 21(7):667-681.
[14] Mas Moruno C, Fraioli R, Albericio F, et al. Novel peptide-based platform for the dual presentation of biologically active peptide motifs on biomaterials[J]. ACS Appl Mater Interfaces, 2014, 6(9):6525-6536.
[15] 王敏, 兰亚, 胡皓, 等. 以胶原水凝胶为支架构建肝细胞三维培养系统[J]. 中国组织工程研究, 2013, 17(29):5323-5330. WANG Min, LAN Ya, HU Hao, et al. In vitro establishment of a three-dimensional hepatocyte culture system usingcollagen hydrogel as scaffolds[J]. Chinese Journal of Tissue Engineering Research, 2013, 17(29):5323-5330.
[1] 刘东,朱冬昀,彭长亮,张程,赵杰,高春正. 脊髓损伤修复的复合透明质酸水凝胶支架的构建及其评价[J]. 山东大学学报(医学版), 2017, 55(9): 53-59.
[2] 孙玉卿,李文涛,刘康,赵立民,张维芬. 黄芪多糖/壳聚糖缓释微球对大鼠变应性鼻炎的治疗作用[J]. 山东大学学报(医学版), 2017, 55(9): 60-65.
[3] 张新科,陈洪元,杨莹,李妍,王凤山. 载pVAX1/Tat PTD-endostatin壳聚糖纳米基因载体的构建与体外活性评价[J]. 山东大学学报(医学版), 2017, 55(7): 43-48.
[4] 谭琦,李娜,陶运明,唐浩,吴忠仕. 载血管内皮生长因子层层自组装提高异种去细胞血管生物相容性[J]. 山东大学学报(医学版), 2017, 55(5): 23-30.
[5] 袁苑,张颖,林琦,戴建建,李冉冉,徐瑞彩,杨琦,耿宝成,韩猛,韩明勇. 125I粒子植入术后应用透明质酸钠凝胶皮下注射保护皮肤1例[J]. 山东大学学报(医学版), 2017, 55(11): 89-92.
[6] 王晓琳,周元丽,孙伟,李莉. p38 MAPK信号通路调控人主动脉平滑肌细胞Ⅰ型和Ⅲ型胶原的表达[J]. 山东大学学报(医学版), 2016, 54(8): 12-16.
[7] 巨媛媛,任满意,李睿,赵萌萌,隋树建. TWEAK通过ERK1/2通路促进大鼠心肌成纤维细胞MMP2与Ⅰ型胶原表达[J]. 山东大学学报(医学版), 2016, 54(5): 23-28.
[8] 安祥莲, 郭泾. 复合CMC脱细胞真皮基质的抗菌性能[J]. 山东大学学报(医学版), 2015, 53(8): 32-37.
[9] 赵仪云, 黄敬春, 王月莲, 邵山, 孙广平, 崔恩美, 卓绍杨, 刘少华. 平阳霉素联合透明质酸钠对人淋巴管畸形内皮细胞的作用[J]. 山东大学学报(医学版), 2015, 53(1): 41-46.
[10] 刘学蔚1,侯绪浩2,陈怡憓1,孙钦峰1,彭凤梅3. 正交优化白及多糖复合支架材料的实验研究[J]. 山东大学学报(医学版), 2014, 52(3): 40-44.
[11] 商睿1,2,唐梦熊2,3,刘琳1,2,丁文渊2,3,郝盼盼2,3,陈玉国2,3. ALK7在高糖诱导的心肌成纤维细胞转化及Ⅰ型胶原合成中的作用[J]. 山东大学学报(医学版), 2013, 51(8): 1-6.
[12] 张德清,朱耀丰, 孟辉,王俊,李岩,史本康. 膀胱内灌注透明质酸钠治疗非细菌性膀胱炎的临床观察[J]. 山东大学学报(医学版), 2013, 51(1): 79-82.
[13] 王其磊1,任满意2,王德金1,徐冬玲1,杜贻萌1,王旭平3,隋树建1. TWEAK通过P38MAPK途径促进大鼠心肌成纤维细胞Ⅰ型胶原和MMP-1的表达[J]. 山东大学学报(医学版), 2012, 50(11): 43-47.
[14] 侯文霞,孟庆慧,吴婧琳,刘敏,郭鹤. 壳聚糖磷脂酰胆碱对AD大鼠脑内PKC-δ及Iba1表达的影响[J]. 山东大学学报(医学版), 2012, 50(10): 37-.
[15] 徐旭东. 多孔性壳聚糖-胶原材料促进神经纤维生长的实验研究[J]. 山东大学学报(医学版), 2011, 49(8): 45-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!