您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2017, Vol. 55 ›› Issue (5): 23-30.doi: 10.6040/j.issn.1671-7554.0.2016.919

• 基础医学 • 上一篇    下一篇

载血管内皮生长因子层层自组装提高异种去细胞血管生物相容性

谭琦1,李娜2,陶运明3,唐浩3,吴忠仕3   

  1. 1.山东大学附属省立医院心外科, 山东 济南 250014;2.山东大学附属省立医院妇科, 山东 济南 250014;3.中南大学湘雅二医院心外科, 湖南 长沙 410011
  • 收稿日期:2016-07-28 出版日期:2017-05-10 发布日期:2017-05-10
  • 通讯作者: 吴忠仕. E-mail:deepblue0630@163.com E-mail:deepblue0630@163.com
  • 基金资助:
    山东省医药卫生科技发展计划(2013WS0115)

Layer-by-layer assembly delivered VEGF enhances biocompatibility of decellularized scaffolds

TAN Qi1, LI Na2, TAO Yunming3, TANG Hao3, WU Zhongshi3   

  1. 1. Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250014, Shandong, China;
    2. Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250014, Shandong, China;
    3. Department of Cardiac Surgery, Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
  • Received:2016-07-28 Online:2017-05-10 Published:2017-05-10

摘要: 目的 探讨血管内皮生长因子(VEGF)结合肝素/壳聚糖层层自组装技术修饰异种去细胞血管,提高其生物相容性。 方法 采用肝素/壳聚糖在异种去细胞血管表面层层自组装,以1-乙基-(3-二甲基氨基丙基)碳酰二亚胺(EDC)进行化学交联,并负载VEGF。采用扫描电镜检测血管表面微结构,甲苯胺蓝法定量分析肝素结合量及缓释性能,采用ELISA法定量分析VEGF结合量及缓释性能,抗凝血活性和血小板黏附试验检测材料血液相容性,采用细胞增殖试验评价材料的细胞增殖能力。 结果 肝素/壳聚糖层层自组装在异种去细胞血管表面形成纳米颗粒样结构,EDC化学交联显著降低肝素及VEGF释放速率,并提高血管的血液相容性。层层自组装/化学交联并负载VEGF促进内皮细胞增殖。 结论 载VEGF层层自组装技术修饰异种去细胞血管,能够改善其生物相容性,促进内皮细胞增殖。

关键词: 层层自组装, 异种去细胞血管, 化学交联, 生物相容性, 血管内皮细胞生长因子

Abstract: Objective Heparin/chitosan layer-by-layer(LBL)assembly delivered vascular endothelial growth factor(VEGF)on decellularized scaffolds(DS)was designed for better biocompatibility. Methods LBL was crosslinked by 1-ethyl-(3- dimethylamino propyl)carbonyl diimine(EDC), and VEGF was delivered on decellularized bovine jugular vein to produce different scaffolds. The microstructure surface of different scaffolds was observed with scanning electron microscopy(SEM). The release performance of heparin and VEGF was determined with elution test. The blood compatibility was tested with anticoagulant activity and platelet adhesion test. The endothelialization on scaffolds was analyzed with cell proliferation. Results Heparin/chitosan multilayer films formed the surface coating by nanoparticles. EDC improved the stability of multilayer films. The release rate of heparin and VEGF was lower in LBL/EDC- 山 东 大 学 学 报 (医 学 版)55卷5期 -谭琦,等.载血管内皮生长因子层层自组装提高异种去细胞血管生物相容性 \=-DS group than in LBL-DS group, and the anticoagulant activity and platelet adhesion were better in LBL/EDC-DS group than in LBL-DS group. Live cell staining and MTT test showed that LBL/EDC delivered VEGF significantly increased proliferation of endothelial cells on scaffolds. Conclusion Heparin/chitosan layer-by-layer technology delivered VEGF can improve biocompatibility and accelerate endothelialization on decellularized scaffolds.

Key words: Layer-by-layer assembly, Decellularized scaffolds, Chemical crosslink, Vascular endothelia growth factor, Biocompatibility

中图分类号: 

  • R339
[1] Lu WD, Zhang M, Wu ZS, et al. Decellularized and photooxidatively crosslinked bovine jugular veins as potential tissue engineering scaffolds[J]. Interact Cardiovasc Thorac Surg, 2009, 8(3): 301-305.
[2] Ota T, Taketani S, Iwai S, et al. Novel method of decellularization of porcine valves using polyethylene glycol and gamma Irradiation[J]. Ann Thorac Surg, 2007, 83(4): 1501-1507.
[3] Zhang Q, Johnson JA, Dunne LW, et al. Decellularized skin/adipose tissue flap matrix for engineering vascularized composite soft tissue flaps[J]. Acta Biomater, 2016, 15(35): 166-184.
[4] Crombez M, Chevallier P, Gaudreault R, et al. Improving arterial prosthesis neo-endothelialization: application of a proactive VEGF construct onto PTFE surfaces[J]. Biomaterials, 2005, 26(35): 7402-7409.
[5] Schimke MM, Stigler R, Wu X, et al. Biofunctionalization of scaffold material with nano-scaled diamond particles physisorbed with angiogenic factors enhances vessel growth after implantation[J]. Nanomedicine, 2016, 12(3): 823-833.
[6] Tao Y, Hu T, Wu Z, et al. Heparin nanomodification improves biocompatibility and biomechanical stability of decellularized vascular scaffolds[J]. Int J Nanomedicine, 2012, 7: 5847-5858.
[7] 赵向东, 吴忠仕, 胡铁辉, 等. 去细胞光氧化牛颈静脉血管片内膜光化学接枝CD34抗体的制备及初步评价[J]. 中国组织工程研究与临床康复, 2008, 12(2): 319-322. ZHAO Xiangdong, WU Zhongshi, HU Tiehui, et al. Fabrication and preliminary assessment of mouse anti-human CD34 grafting onto decellularized and photooxidated bovine jugular vein matrix intima[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2008, 12(2): 319-322.
[8] Kumorek M, Kubies D, Filová E, et al. Cellular Responses Modulated by FGF-2 Adsorbed on Albumin/Heparin Layer-by-Layer Assemblies[J]. PLoS One, 2015, 10(5): 484-507.
[9] Gribova V, Auzely-Velty R, Picart C. Polyelectrolyte multilayer assemblies on materials surfaces: from cell adhesion to tissue engineering[J]. Chem Mater, 2012, 24(5): 854-869.
[10] 秦超师, 李晓艳, 冯高科, 等. 生物全降解聚左旋乳酸/无定形磷酸钙支架植入大鼠体内后周围组织的钙化[J]. 中国组织工程研究,2015,19(30): 4842-4848. QIN Chaoshi, LI Xiaoyan, FENG Gaoke, et al. Effect of poly-L-lactic acid/amorphous calcium phosphate scaffold on the surrounding tissue calcification after implantation into the rats[J]. Chinese Journal of Tissue Engineering Research, 2015, 19(30): 4842-4848.
[11] Tan Q, Tang H, Wu Z, et al. Controlled release of chitosan/heparin nanoparticle-delivered VEGF enhances regeneration of decellularized tissue-engineered scaffolds[J]. Int J Nanomedicine, 2011, 6: 929-942.
[12] 陶运明, 胡铁辉, 吴忠仕, 等. 肝素铁复合物纳米修饰提高异种移植血管的血液相容性[J]. 中南大学学报(医学版), 2012, 37(3): 260-266. TAO Yunming, HU Tiehui, WU Zhongshi, et al. Heparin-iron complex multilayer nanomodification improves hemocompatibility of decellular xenograft[J]. Journal of Central South University(Medical Science), 2012, 37(3): 260-266.
[13] 肖宏涛, 田社民, 查新建, 等. 不同交联剂对脱细胞牛心包膜生物材料改性的实验研究[J]. 中国修复重建外科杂志,2015, 29(10): 1301-1306. XIAO Hongtao, TIAN Shemin, ZHA Xinjian, et al. Study on modification of biomaterials of acellular bovine pericardium with different crosslinking reagents[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2015, 29(10): 1301-1306.
[14] Chiu LL, Radisic M. Scaffolds with covalently immobilized VEGF and Angiopoietin-1 for vascularization of engineered tissues[J]. Biomaterials, 2010, 31(2): 226-241.
[15] Hua J, Li Z, Xia W, et al. Preparation and properties of EDC/NHS mediated crosslinking poly(gamma-glutamic acid)/epsilon-polylysine hydrogels[J]. Mater Sci Eng C Mater Biol Appl, 2016, 61(1): 879-892.
[16] Thoreson AR, Hiwatari R, An KN, et al. The effect of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide suture coating on tendon repair strength and cell viability in a canine model[J]. Hand Surg Am, 2015, 40(10): 1986-1991.
[17] Tiwari A, Kesharwani P, Gajbhiye V, et al. Synthesis and characterization of dendro-PLGA nanoconjugate for protein stabilization[J]. Colloids Surf B Biointerfaces, 2015, 134(1): 279-286.
[18] Chung Y, Kim S, Lee Y, et al. Efficient revascularization by VEGF administration via heparin-functionalized nanoparticle-fibrin complex[J]. J Control Release, 2010, 143(3): 282-289.
[19] Elahi MF, Guan G, Wang L, et al. Surface modification of silk fibroin fabric using layer-by-layer polyelectrolyte deposition and heparin immobilization for small-diameter vascular prostheses[J]. Langmuir, 2015, 31(8): 2517-2526.
[20] Liu S, Liu T, Chen J, et al. Influence of a layer-by-layer-assembled multilayer of anti-CD34 antibody, vascular endothelial growth factor, and heparin on the endothelialization and anticoagulation of titanium surface[J]. J Biomed Mater Res A, 2013, 101(4): 1144-1157.
[21] Smadja DM, Dorfmüller P, Guerin CL, et al. Cooperation between human fibrocytes and endothelial colony-forming cells increases angiogenesis via the CXCR4 pathway[J]. Thromb Haemost, 2014, 112(5): 1002-1013.
[1] 张锋, 戴杰, 任灵飞, 蒋颂瑶, 施更生. 纯钛钛片表面不同生物大分子涂层的比较研究[J]. 山东大学学报(医学版), 2015, 53(8): 38-43.
[2] 付庆元, 戴桂强, 张松, 安洪春, 梁世民. 西洋参茎叶皂苷对脑梗死大鼠ET-1、VEGF及脑梗死面积的影响[J]. 山东大学学报(医学版), 2014, 52(9): 30-33.
[3] 陈荟,郭泾. 猪脱细胞基质矿化支架材料的生物相容性及降解特性[J]. 山东大学学报(医学版), 2013, 51(5): 48-53.
[4] 徐荣建,王法刚,党伟,曹永倩,林莉,韦浩,赵君,国丽. 激光治疗对婴幼儿皮肤血管瘤患者血浆VEGF及bFGF表达的影响[J]. 山东大学学报(医学版), 2013, 51(4): 96-99.
[5] 庞永志1,胡温庭2,彭凤梅3. 复方白芨胶/珍珠层粉修复兔牙槽骨缺损的实验研究[J]. 山东大学学报(医学版), 2013, 51(1): 37-.
[6] 梁杰1,崔军1,孙康宁2,徐欣1,3. 壳聚糖温敏凝胶引导组织再生膜的制备及其细胞生物相容性[J]. 山东大学学报(医学版), 2011, 49(6): 80-.
[7] . 氨茶碱/壳聚糖/β环糊精肺部缓释微球对呼吸道粘膜的影响[J]. 山东大学学报(医学版), 2009, 47(9): 21-24.
[8] 张帅,胡立宽,许曼,付雷,竺鑫丽. 血清VEGF水平在非小细胞肺癌综合评价中的作用[J]. 山东大学学报(医学版), 2008, 46(12): 1177-1180.
[9] 高锡刚,王玲. 肺癌中P-AKT的表达与血管生成[J]. 山东大学学报(医学版), 2007, 45(2): 184-187.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!