您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2014, Vol. 52 ›› Issue (10): 1-8,28.doi: 10.6040/j.issn.1671-7554.0.2014.273

• 基础医学 •    下一篇

STZ诱导糖尿病联合正常饮食促ApoE-/-小鼠动脉粥样硬化的作用

孙慧, 赵磊, 甄茜, 王莎莎, 黄山英, 贺红, 胡琴   

  1. 山东大学齐鲁医院心内科 国家教育部和卫生部心血管重塑和功能研究重点实验室, 山东 济南 250012
  • 收稿日期:2014-04-29 修回日期:2014-09-14 出版日期:2014-10-10 发布日期:2014-10-10
  • 通讯作者: 胡琴。E-mail:huqin@sdu.edu.cn E-mail:huqin@sdu.edu.cn
  • 基金资助:
    国家自然科学基金(81100204,81370410)

Pro-atherosclerotic effects of streptozotocin-induced diabetes combined with chow diet on apoE-/-mice

SUN Hui, ZHAO Lei, ZHEN Xi, WANG Shasha, HUANG Shanying, HE Hong, HU Qin   

  1. Department of Cardiology, Qilu Hospital of Shandong University;
    Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Jinan 250012, Shandong, China
  • Received:2014-04-29 Revised:2014-09-14 Online:2014-10-10 Published:2014-10-10

摘要: 目的 探讨链脲佐菌素(STZ)诱导糖尿病联合正常饮食对ApoE-/-小鼠动脉粥样硬化病变的作用。方法 取60只8周龄雄性ApoE-/-小鼠正常饮食饲养2周后,随机分为糖尿病组(采用小剂量STZ持续腹腔注射5 d)和非糖尿病对照组(柠檬酸盐缓冲液注射5 d),每组30只,正常饮食喂养13周后处死。分别检测小鼠血脂、炎症因子和血糖变化;HE和油红O染色检测各组小鼠大体和主动脉根部斑块病变;免疫组化、RT-PCR和Western blotting技术分别检测斑块内血管平滑肌细胞、巨噬细胞、基质金属蛋白酶-9/基质金属蛋白酶抑制剂-1(MMP-9/TIMP-1)、肿瘤坏死因子(TNF-α)和巨噬细胞趋化性因子(MCP-1)基因或蛋白含量变化。结果 非糖尿病对照组主动脉及其根部病变轻微。与非糖尿病对照组比较,糖尿病组斑块面积明显增加,其中脂质、巨噬细胞、Ⅰ和Ⅲ型胶原、血管壁平滑肌细胞含量增加,但纤维帽处平滑肌细胞减少,斑块易损指数增加;血清MIF和IL-6水平升高,血管组织TNF-α、MCP-1、MMP-2和MMP-9基因表达或蛋白含量增加,而TIMP-1含量下降。结论 STZ诱导糖尿病ApoE-/-小鼠联合正常饮食有促动脉粥样硬化作用,并增加斑块易损性和机体炎症状态。

关键词: 链脲佐菌素, 动脉粥样硬化, ApoE-/-小鼠, 糖尿病

Abstract: Objective To explore the effects of streptozotocin(STZ)-induced diabetes combined with chow diet on atherosclerotic lesions of apoE-/-mice. Methods After 2 weeks of chow diet, 60 male apoE-/-mice (10 weeks old) were randomly divided into two groups. Diabetic apoE-/-mice (n=30) were constructed by intraperitoneal injection of low-dose STZ for 5 consecutive days. ApoE-/-mice (n=30) injected with citrate buffer liquid served as non-diabetic controls. All mice were fed with chow diet until sacrifice (23 weeks old). Serum lipid, inflammation cytokines and blood glucose were measured. Atherosclerotic plaques in the aorta and aortic root were examined with HE staining and Oil-Red-O staining. The mRNA and protein levels of vascular smooth muscle cells (SMCs), macrophages, MMP-9/TIMP-1, TNF-α and MCP-1 in the plaques were detected with immunohistochemical staining, RT-PCR and Western blotting, respectively. Results The non-diabetic apoE-/-mice showed slight atherosclerotic lesions, while diabetic apoE-/-mice had significantly aggravated atherosclerotic lesions. Compared with non-diabetic mice, diabetic apoE-/-mice had markedly larger size of plaques, in which lipid, macrophages, type Ⅰ and Ⅲ collagens and SMCs increased,while SMCs in fiber cap decreased, and atherosclerotic plaque instability index rose. Moreover, serum IL-6 and MIF levels, TNF-α, MCP-1, MMP-2 and MMP-9 mRNA all increased while TIMP-1 decreased. Conclusion STZ-induced diabetic apoE-/-mice fed with chow diet show deteriorated atherosclerotic lesions and relatively unstable plaques.

Key words: Diabetes mellitus, Atherosclerosis, ApoE-/-mice, Streptozotocin

中图分类号: 

  • R541.4
[1] Juutilainen A, Lehto S, Ronnemaa T, et al. Similarity of the impact of type 1 and type 2 diabetes on cardiovascular mortality in middle-aged subjects[J]. Diabetes Care, 2008, 31(4): 714-719.
[2] Grundy S M, Howard B, Smith S Jr, et al. Prevention conference VI: Diabetes and cardiovascular disease executive summary conference proceeding for healthcare professionals from a special writing group of the American heart association[J]. Circulation, 2002, 105(18): 2231-2239.
[3] Toso C, Emamaullee J A, Merani S, et al. The role of macrophage migration inhibitory factor on glucose metabolism and diabetes[J]. Diabetologia, 2008, 51(11): 1937-1946.
[4] Tse J, Martin-McNaulty B, Halks-Miller M, et al. Accelerated atherosclerosis and premature calcified cartilaginous metaplasia in the aorta of diabetic male Apo E knockout mice can be prevented by chronic treatment with 17 beta-estradiol[J]. Atherosclerosis, 1999, 144(2): 303-313.
[5] Jawień J, Nastałek P, Korbut R. Mouse models of experimental atherosclerosis[J]. J Physiol Pharmacol, 2004, 55(3): 503-517.
[6] Hsueh W, Abel E D, Breslow J L, et al. Recipes for creating animal models of diabetic cardiovascular disease[J]. Circ Res, 2007, 100(10): 1415-1427.
[7] Nakashima Y, Plump A S, Raines E W, et al. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree[J]. Arterioscler Thromb, 1994, 14(1): 133-140.
[8] Abel E D, Kaulbach H C, Tian R, et al. Cardiac hypertrophy with preserved contractile function after selective deletion of GLUT4 from the heart[J]. J Clin Invest, 1999, 104(12): 1703-1714.
[9] Gallagher E J, Sun H, Kornhauser C, et al. The effect of dipeptidyl peptidase-IV inhibition on bone in a mouse model of type 2 diabetes[J]. Diabetes Metab Res Rev, 2014, 30(3): 191-200.
[10] Naveiras O, Nardi V, Wenzel P L, et al. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment[J]. Nature, 2009, 460(7252): 259-264.
[11] Kadoglou N P, Moustardas P, Kapelouzou A, et al. The anti-inflammatory effects of exercise training promote atherosclerotic plaque stabilization in apolipoprotein E knockout mice with diabetic atherosclerosis[J]. Eur J Histochem, 2013, 57(1): 3.
[12] Goldberg I J, Dansky H M. Diabetic vascular disease: an experimental objective[J]. Arterioscler Thromb Vasc Biol, 2006, 26(8): 1693-701.
[13] Tong C, Morrison A, Yan X, et al. Macrophage migration inhibitory factor deficiency augments cardiac dysfunction in Type 1 diabetic murine cardiomyocytes[J]. J Diabetes, 2010, 2(4): 267-274.
[14] Kunjathoor V V, Wilson D L, LeBoeuf R C. Increased atherosclerosis in streptozotocin-induced diabetic mice[J]. J Clin Invest, 1996, 97(7): 1767-1773.
[15] Candido R, Jandeleit-Dahm K A, Cao Z, et al. Prevention of Accelerated Atherosclerosis by Angiotensin-Converting Enzyme Inhibition in Diabetic Apolipoprotein E-Deficient Mice[J]. Circulation, 2002, 106(2): 246-253.
[16] Koïtka A, Cao Z, Koh P, et al. Angiotensin Ⅱ subtype 2 receptor blockade and deficiency attenuate the development of atherosclerosis in an apolipoprotein E-deficient mouse model of diabetes[J]. Diabetologia, 2010, 53(3): 584-592.
[17] Shen X, Bornfeldt K E. Mouse models for studies of cardiovascular complications of type 1 diabetes[J]. Ann N Y Acad Sci, 2007, 1103: 202-217.
[18] Libby P. Inflammation in atherosclerosis[J]. Nature, 2002, 420(6917): 868-874.
[19] Göran K, Hansson P L, Yan Usa Z. Innate and Adaptive Immunity in the Pathogenesis of Atherosclerosis[J]. Circulation Research, 2002, 91(4): 281-291.
[20] van der Wal A C, Becker A E, van der Loos C M, et al. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology[J]. Circulation, 1994, 89(1): 36-44.
[21] Boring L, Gosling J, Cleary M, et al. Decreased lesion formation in CCR2-/-mice reveals a role for chemokines in the initiation of atherosclerosis[J]. Nature, 1998, 394(6696): 894-897.
[22] Huber S A, Sakkinen P, Conze D, et al.Interleukin-6 exacerbates early atherosclerosis in mice[J]. Arterioscler Thromb Vasc Biol, 1999, 19(10): 2364-2367.
[23] Wong N D, Patao C, Malik S, et al. Preventable coronaryheart disease events from control of cardiovascular risk factors in US adults with diabetes (Projections from Utilizing the UKPDS Risk Engine)[J]. Am J Cardiol, 2014, 113(8): 1356-1361.
[24] Sherry C L, O'Connor J C, Kramer J M, et al. Augmented lipopolysaccharide-induced TNF-alpha production by peritoneal macrophages in type 2 diabetic mice is dependent on elevated glucose and requires p38 MAPK[J]. J Immunol, 2007, 178(2): 663-670.
[25] Gough P J, Gomez I G, Wille P T, et al. Macrophage expression of active MMP-9 induces acute plaque disruption in apoE-deficient mice[J]. J Clin Invest, 2006, 116(1): 59-69.
[26] Ding S, Zhang M, Zhao Y, et al. The role of carotid plaque vulnerability and inflammation in the pathogenesis of acute ischemic stroke[J]. Am J Med Sci, 2008, 336(1): 27-31.
[27] Matsumura S, Iwanaga S, Mochizuki S, et al. Targeted deletion or pharmacological inhibition of MMP-2 prevents cardiac rupture after myocardial infarction in mice[J]. J Clin Invest, 2005, 115(3): 599-609.
[28] Newby A C. Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates[J]. Cardiovasc Res, 2006, 69(3): 614-624.
[29] Allaire E, Forough R, Clowes M, et al. Local overexpression of TIMP-1 prevents aortic aneurysm degeneration and rupture in a rat model[J]. J Clin Invest, 1998, 102(7): 1413-1420.
[30] Rouis M, Adamy C, Duverger N, et al. Adenovirus-mediated overexpression of tissue inhibitor of metalloproteinase-1 reduces atherosclerotic lesions in apolipoprotein E–deficient mice[J]. Circulation, 1999, 100(5): 533-540.
[31] Lemaître V, Soloway P D, D'Armiento. Increased medial degradation with pseudo-aneurysm formation in apolipoprotein E-knockout mice deficient in tissue inhibitor of metalloproteinases-1[J]. Circulation, 2003, 107(2): 333-338.
[1] 孔令群,王学文,王海滨,曹学峰,吴燕彬,张兴元. 副神经节瘤1例报告[J]. 山东大学学报 (医学版), 2020, 1(9): 110-112.
[2] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7-14.
[3] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24-31.
[4] 张亮,徐敏,庄向华,娄福臣,娄能俊,吕丽,郭文娟,郑凤杰,陈诗鸿. 内质网应激与凋亡在糖尿病周围神经病变中的表达变化[J]. 山东大学学报(医学版), 2017, 55(8): 13-17.
[5] 尹妮,杨关林,姜钧文,王春田,王凤耀,贾连群,高晓宇,潘嘉祥,李芹,李佳,冯元洁,高玉竹,周鹤,张哲. 巴马小型猪冠状动脉粥样硬化模型的评价方法[J]. 山东大学学报(医学版), 2017, 55(7): 1-5.
[6] 苏萍,杨亚超,杨洋,季加东,阿力木·达依木,李敏,薛付忠,刘言训. 健康管理人群2型糖尿病发病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 82-86.
[7] 张振堂,杨洋,韩福俊,陈向华,季晓康,王永超,王淑康,孙苑潆,李敏,陈亚飞,王丽,薛付忠,刘言训. 基于社区2型糖尿病患者的心脑血管事件5年风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 108-113.
[8] 李帅,王雅琳,孙忠文,朱梅佳. Nod样受体蛋白3炎性体在2型糖尿病脑微血管内皮细胞中的变化及变化机制[J]. 山东大学学报(医学版), 2017, 55(3): 6-11.
[9] 张云华,李杰. 颈动脉斑块内新生血管显影程度及血浆Lp-PLA2水平对急性脑梗死的临床诊断价值[J]. 山东大学学报(医学版), 2017, 55(3): 112-116.
[10] 谢海滨,武群政,刘少壮,黄鑫,程玉刚,胡三元,张光永. 肝线粒体相关内质网膜在袖状胃切除术改善糖尿病大鼠胰岛素敏感性中的作用[J]. 山东大学学报(医学版), 2017, 55(10): 36-40.
[11] 巩璐伟,周丽珍,苏国海. 培哚普利通过调节Akt-FoxO1通路保护糖尿病性心肌病大鼠心功能损伤[J]. 山东大学学报(医学版), 2017, 55(10): 65-70.
[12] 杨洋,张光,张成琪,宋心红,薛付忠,王萍,王丽,刘言训. 基于体检队列的2型糖尿病风险预测模型[J]. 山东大学学报(医学版), 2016, 54(9): 69-72.
[13] 魏丹丹,张澄. 血管紧张素Ⅳ型受体过表达对早期动脉粥样硬化斑块形成的影响[J]. 山东大学学报(医学版), 2016, 54(8): 1-5.
[14] 彭力,强晔,赵蕙琛,陈诗鸿,姚伟东,刘元涛. 2型糖尿病患者应用西格列汀的短期疗效及影响因素[J]. 山东大学学报(医学版), 2016, 54(8): 60-63.
[15] 林栋,管庆波. 2型糖尿病男性患者血清睾酮水平低下对非酒精性脂肪肝的影响[J]. 山东大学学报(医学版), 2016, 54(7): 33-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!