山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (8): 41-50.doi: 10.6040/j.issn.1671-7554.0.2025.0511
• 临床研究 • 上一篇
王梦星1,薛付忠1,2,3,杨帆1,2,3
WANG Mengxing1, XUE Fuzhong1,2,3, YANG Fan1,2,3
摘要: 目的 通过融合扫描式葡萄糖监测(flash glucose monitoring, FGM)数据与结构化电子健康记录(electronic health records, EHR)中的多模态信息,构建1型糖尿病(type 1 diabetes mellitus, T1DM)患者血糖浓度预测模型,以解决传统单一模态模型在捕捉复杂血糖波动规律时的局限性,为临床制定个性化控糖策略及早期风险预警提供数据支持。 方法 基于T1DiabetesGranada数据集,整合FGM数据、生化检测指标、人口统计学信息及诊断编码等模态特征,构建多模态时序预测模型XCLA-Net。该模型采用一维卷积神经网络提取血糖序列的局部动态特征,结合长短时记忆网络建模长期时间依赖关系,通过交叉注意力机制实现多模态语义对齐,并引入自归一化神经网络增强融合特征的稳定性。 结果 XCLA-Net在RMSE、MAE、MAPE等评估指标上显著优于多种对比模型。在未来1 h和3 h预测任务中,MAPE分别为19.64%和37.81%,表明模型在不同时间尺度下具备较强的预测准确性;克拉克误差网格分析表明,模型预测结果高度集中于A区,具备良好的临床一致性。消融实验验证了交叉注意力机制、一维卷积神经网络与长短时记忆网络对提升模型预测性能的关键作用。 结论 本研究提出的XCLA-Net通过多模态数据融合与时序建模,显著提升了血糖预测的精度与稳定性,具备良好的临床解释性和实用价值,为T1DM患者的个性化血糖管理及早期风险预警提供有效支持。
中图分类号:
| [1] Ilonen J, Lempainen J, Veijola R. The heterogeneous pathogenesis of type 1 diabetes mellitus[J]. Nat Rev Endocrinol, 2019, 15(11): 635-650. [2] International Diabetes Federation. IDF diabetes atlas, 11th edn[R]. Brussels, Belgium: International Diabetes Federation, 2025. [3] Martín-Timón I, Del Cañizo-Gómez FJ. Mechanisms of hypoglycemia unawareness and implications in diabetic patients[J]. World J Diabetes, 2015, 6(7): 912-926. [4] 师瑞, 冯磊, 唐灵通, 等. 糖尿病患者血糖波动评价指标研究进展[J]. 中华全科医学, 2022, 20(12): 2105-2109. SHI Rui, FENG Lei, TANG Lingtong, et al. Research progress on evaluation indicators of blood glucose fluctuation in patients with diabetes[J]. Chinese Journal of General Practice, 2022, 20(12): 2105-2109. [5] Nemat H, Khadem H, Elliott J, et al. Data-driven blood glucose level prediction in type 1 diabetes: a comprehensive comparative analysis[J]. Sci Rep, 2024, 14: 21863. doi:10.1038/s41598-024-70277-x [6] Wang Q, Molenaar P, Harsh S, et al. Personalized state-space modeling of glucose dynamics for type 1 diabetes using continuously monitored glucose, insulin dose, and meal intake: an extended Kalman filter approach[J]. J Diabetes Sci Technol, 2014, 8(2): 331-345. [7] 肖泽秋, 李勇, 王霞. 基于PBI-CLA模型的糖尿病患者血糖浓度预测[J]. 计算机工程, 2025: 1-11. doi: 10.19678/j.issn.1000-3428.0070527 XIAO Zeqiu, LI Yong, WANG Xia. Prediction of blood glucose concentration in diabetic patients based on PBI-CLA model[J]. China Industrial Economics, 2025: 1-11. doi: 10.19678/j.issn.1000-3428.0070527 [8] 童梦, 丁国荣, 余楠, 等. 一种基于VMD-PSO-LSTM的血糖预测方法[J]. 计算机与数字工程, 2023, 51(6): 1439-1443. TONG Meng, DING Guorong, YU Nan, et al. Prediction method of blood glucose based on VMD-PSO-LSTM[J]. Computer & Digital Engineering, 2023, 51(6): 1439-1443. [9] Wang L, Pan ZL, Liu W, et al. A dual-attention based coupling network for diabetes classification with heterogeneous data[J]. J Biomed Inform, 2023, 139: 104300. doi:10.1016/j.jbi.2023.104300 [10] Rodriguez-Leon C, Aviles-Perez MD, Banos O, et al. T1DiabetesGranada: a longitudinal multi-modal dataset of type 1 diabetes mellitus[J]. Sci Data, 2023, 10(1): 916. doi:10.1038/s41597-023-02737-4 [11] Engels JM, Diehr P. Imputation of missing longitudinal data: a comparison of methods[J]. J Clin Epidemiol, 2003, 56(10): 968-976. [12] Dahouda MK, Joe I. A deep-learned embedding technique for categorical features encoding[J]. IEEE Access, 2021, 9: 114381-114391. doi:10.1109/ACCESS.2021.3104357 [13] Jain YK, Bhandare SK. Min max normalization based data perturbation method for privacy protection[J]. Int J Comput Commun Technol, 2013: 233-238. doi:10.47893/ijcct.2013.1201 [14] Palangi H, Deng L, Shen YL, et al. Deep sentence embedding using long short-term memory networks: analysis and application to information retrieval[J]. IEEE/ACM Trans Audio Speech Lang Process, 2016, 24(4): 694-707. [15] Shi J, Telesca D, Suchard MA. Statistical learning techniques applied to epidemiology: a simulated case-control comparison study with logistic regression[J]. BMC Bioinformatics, 2011, 12: 37. doi:10.1186/1471-2105-12-37 [16] Zhang J, He XH, Liu Y, et al. Multi-modal cross-attention network for Alzheimers disease diagnosis with multi-modality data[J]. Comput Biol Med, 2023, 162: 107050. doi:10.1016/j.compbiomed.2023.107050 [17] Klambauer G, Unterthiner T, Mayr A, et al. Self-normalizing neural networks[EB/OL].(2017-09-07)[2025-04-26]. https://doi.org/10.48550/arXiv.1706.02515 [18] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[EB/OL].(2023-08-02)[2025-04-26]. https://doi.org/10.48550/arXiv.1706.03762 [19] Santurkar S, Tsipras D, Ilyas A, et al. How does batch normalization help optimization?[EB/OL].(2019-04-15)[2025-04-26]. https://doi.org/10.48550/arXiv.1805.11604 [20] Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. J Mach Learn Res, 2014, 15: 1929-1958. doi: 10.5555/2627435.2670313 [21] 陶蔚, 陇盛, 刘鑫, 等. 深度学习步长自适应动量优化方法研究综述[J]. 小型微型计算机系统, 2025, 46(2): 257-265. TAO Wei, LONG Sheng, LIU Xin, et al. Review of adaptive stepsize momentum optimization methods in deep learning[J]. Journal of Chinese Computer Systems, 2025, 46(2): 257-265. [22] Felizardo V, Garcia NM, Pombo N, et al. Data-based algorithms and models using diabetics real data for blood glucose and hypoglycaemia prediction-a systematic literature review[J]. Artif Intell Med, 2021, 118: 102120. doi:10.1016/j.artmed.2021.102120 [23] Clarke WL. The original Clarke error grid analysis(EGA)[J]. Diabetes Technol Ther, 2005, 7(5): 776-779. [24] Shiri FM, Perumal T, Mustapha N, et al. A comprehensive overview and comparative analysis on deep learning models: CNN, RNN, LSTM, GRU[EB/OL].(2025-03-17)[2025-04-26]. https://doi.org/10.48550/arXiv.2305.17473 [25] Kamyshanska H, Memisevic R. The potential energy of an autoencoder[J]. IEEE Trans Pattern Anal Mach Intell, 2015, 37(6): 1261-1273. [26] Deng YX, Lu L, Aponte L, et al. Deep transfer learning and data augmentation improve glucose levels prediction in type 2 diabetes patients[J]. NPJ Digit Med, 2021, 4(1): 109. doi:10.1038/s41746-021-00480-x [27] Yang T, Yu X, Tao R, et al. Blood glucose prediction for type 2 diabetes using clustering-based domain adaptation[J]. Biomed Signal Process Contr, 2025, 105: 107629. doi:10.1016/j.bspc.2025.107629 [28] Pfützner A, Klonoff DC, Pardo S, et al. Technical aspects of the Parkes error grid[J]. J Diabetes Sci Technol, 2013, 7(5): 1275-1281. [29] Yu X, Yang Z, Wang XZ, et al. A prior-knowledge-guided dynamic attention mechanism to predict nocturnal hypoglycemic events in type 1 diabetes[J]. BMC Med Inform Decis Mak, 2024, 24(1): 378. doi:10.1186/s12911-024-02761-3 [30] Van den Broeck G, Lykov A, Schleich M, et al. On the tractability of SHAP explanations[J]. Jair, 2022, 74: 851-886. doi:10.1613/jair.1.13283 |
| [1] | 赵旭, 崔敏, 于灵芝, 张娜, 曹鲁宁. 1型糖尿病大鼠Runx2、Osterix表达变化及唑来膦酸的干预作用[J]. 山东大学学报(医学版), 2015, 53(3): 56-61. |
| [2] | 于健, 叶瑶, 黄漓莉, 刘晓玲, 莫如芬, 杨帆, 胡璟, 周英琼, 何永玲. 巴马小型猪1型糖尿病模型胰腺病理及生化指标的变化[J]. 山东大学学报(医学版), 2014, 52(12): 10-14. |
| [3] | 李争明,于健. 妊娠相关暴发性1型糖尿病酮症酸中毒并死胎1例[J]. 山东大学学报(医学版), 2013, 51(11): 107-107. |
| [4] | 刘梅1,张君2,王旭霞3. T1DM、T2DM糖尿病大鼠牙槽骨骨密度变化的相关性实验研究[J]. 山东大学学报(医学版), 2011, 49(9): 53-. |
| [5] | 邵鹏,李桂梅,张丽娟,胡艳艳,柳彩虹. 甘精胰岛素和门冬胰岛素对发病NOD小鼠的疗效观察[J]. 山东大学学报(医学版), 2010, 48(12): 15-18. |
|
||