您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (11): 98-104.doi: 10.6040/j.issn.1671-7554.0.2025.0145

• 公共卫生与预防医学 • 上一篇    

2020—2023年德州市低温与急救呼叫频次的关联及大气PM2.5组分的修饰效应

孙淑凡1,钟毓2,赵琦1,曲一楠1,王骋3,王冬梅2   

  1. 1.山东大学齐鲁医学院公共卫生学院流行病学系, 山东 济南 250012;2.德州市疾病预防控制中心, 山东 德州 253016;3.山东大学医学融合与实践中心, 山东 济南 250012
  • 发布日期:2025-11-28
  • 通讯作者: 王冬梅. E-mail:wdm5157@163.com
  • 基金资助:
    国家自然科学基金青年项目(42205179);山东省优秀青年基金(海外)(2022HWYQ-055)

Association between low-temperature exposure and emergency call frequency in Dezhou City from 2020 to 2023: modification effect of ambient PM2.5 components

SUN Shufan1, ZHONG Yu2, ZHAO Qi1, QU Yinan1, WANG Cheng3, WANG Dongmei2   

  1. 1. Department of Epidemiology, School of Public Health, Shandong University, Jinan 250012, Shandong, China;
    2. Dezhou Center for Disease Control and Prevention, Dezhou 253016, Shandong, China;
    3. Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
  • Published:2025-11-28

摘要: 目的 探讨山东省德州市冷季低温暴露与急救呼叫频次的关联,评估细颗粒物(fine particulate matter, PM2.5)及其组分对该关联的修饰效应,为应对不良大气环境的健康风险提供依据。 方法 收集德州市2020—2023年急救呼叫数据和同期气象数据,采用嵌套分布滞后非线性模型(distributed lag non-linear models, DLNM)的广义加性模型(generalized additive model, GAM)分析冷季(11月至次年2月)低温暴露与急救呼叫频次的关联程度,通过将PM2.5及组分与气温建立乘积项探究其修饰效应。 结果 2020—2023年冷季德州市总急救呼叫频次共150 408次。研究期间日平均温度(1.52±6.23)℃,PM2.5日平均质量浓度57.60±53.65 μg/m3。累积低温暴露与急救呼叫频次的关联曲线近似“U”型(滞后0~30 d),极端低温暴露(-6.03 ℃)和中度低温暴露(-1.02 ℃)对应的急救呼叫相对风险(relative risk, RR)及95%CI分别为1.61(1.36~1.91)和1.40(1.27~1.54)。在极端低温暴露时,黑碳和有机物可增加低温相关急救呼叫风险(P<0.05);在中度低温暴露时,PM2.5及组分可增加低温相关急救呼叫风险(P<0.01)。 结论 山东省德州市冷季低温暴露与急救呼叫频次增加显著相关,高浓度PM2.5及其组分可增强低温暴露-急救呼叫频次的关联强度。

关键词: 低温, PM2.5组分, 修饰效应, 急救呼叫

Abstract: Objective To investigate the association between low-temperature exposure and emergency call frequency during the cold season in Dezhou City, Shandong Province, China, and to evaluate the modification effects of fine particulate matter(PM2.5)and its components on this relationship, with the aim of providing addressing health risks associated with adverse atmospheric environments. Methods Emergency call data and meteorological data from Dezhou City during 2020-2023 were collected. The impact of low-temperature exposure during the cold-season(November to next February)on emergency call frequency was assessed using a generalized additive model(GAM)with distributed lag non-linear models(DLNM). The modifying effects were explored by including interaction terms between temperature and PM2.5 and its components. Results A total of 150, 408 emergency calls were recorded during the cold season from 2020 to 2023 in Dezhou City. The daily average temperature during the study period was(1.52±6.23)℃, and the daily average concentrations of PM2.5 was 57.60±53.65 μg/m3. The cumulative exposure-response curve between low-temperature exposure and emergency call frequency over 0-30 days displayed an approximate “U” shape. The relative risks(RR)and 95% confidence interval(CI)for emergency calls corresponding to extreme low-temperature exposure(-6.03 ℃)and moderate low-temperature exposure(-1.02 ℃)were 1.61(1.36-1.91)and 1.40(1.27-1.54), respectively. Under extreme low-temperature exposure, black carbon and organic matter significantly increased the low-temperature-related risk of emergency calls(P<0.05). Under moderate low-temperature exposure, PM2.5 and components significantly elevated the low-temperature-related risk of emergency calls(P<0.01). Conclusion Cold-season low-temperature exposure was positively associated with emergency call frequency in Dezhou City, Shandong Province. High concentrations of PM2.5 and its components exacerbated the strength of association.

Key words: Low temperature, Components of PM2.5, Modifying effects, Emergency calls

中图分类号: 

  • R122
[1] GBD 2021 Causes of Death Collaborators. Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990-2021: a systematic analysis for the global burden of disease study 2021[J]. Lancet, 2024, 403(10440): 2100-2132.
[2] Wang W, Zeng J, Li XL, et al. Using a novel strategy to identify the clustered regions of associations between short-term exposure to temperature and mortality and eva-luate the inequality of heat- and cold-attributable burdens: a case study in the Sichuan Basin, China[J]. J Environ Manage, 2024, 349: 119402. doi: 10.1016/j.jenvman.2023.119402
[3] Díaz J, López-Bueno JA, Sáez M, et al. Will there be cold-related mortality in Spain over the 2021-2050 and 2051-2100 time horizons despite the increase in temperatures as a consequence of climate change?[J]. Environ Res, 2019, 176: 108557. doi: 10.1016/j.envres.2019.108557
[4] Ma SM, Zhu CW. Extreme cold wave over east Asia in January 2016: a possible response to the larger internal atmospheric variability induced by Arctic warming[J]. J Climate, 2019, 32(4): 1203-1216.
[5] Sangkharat K, Mahmood MA, Thornes JE, et al. Impact of extreme temperatures on ambulance dispatches in London, UK[J]. Environ Res, 2020, 182: 109100. doi: 10.1016/j.envres.2019.109100
[6] Cui YJ, Ai SQ, Liu YY, et al. Hourly associations between ambient temperature and emergency ambulance calls in one central Chinese city: call for an immediate emergency plan[J]. Sci Total Environ, 2020, 711: 135046. doi: 10.1016/j.scitotenv.2019.135046
[7] Yang CY, Chen XY, Chen RJ, et al. Daily ambient temperature and renal colic incidence in Guangzhou, China: a time-series analysis[J]. Int J Biometeorol, 2016, 60(8): 1135-1142.
[8] 赵忠辉. 山东省空气颗粒物所致死亡风险及其与气温的交互作用[D]. 济南: 山东大学, 2024.
[9] Zhou PX, Hu JL, Yu CH, et al. Short-term exposure to fine particulate matter constituents and mortality: case-crossover evidence from 32 counties in China[J]. Sci China Life Sci, 2022, 65(12): 2527-2538.
[10] 王丽, 李庆生, 梁秀清, 等. 2010年德州异常气候分析[J]. 山东气象, 2013, 33(1): 27-29. WANG Li, LI Qingsheng, LIANG Xiuqing, et al. Analysis of abnormal climate in Dezhou in 2010[J]. Journal of Shandong Meteorology, 2013, 33(1): 27-29.
[11] 王文玲. 德州市冬季大气PM2.5污染特征及成因分析[J]. 中国资源综合利用, 2023, 41(5): 171-173. WANG Wenling. Analysis on the characteristics and causes of winter atmospheric PM2.5 pollution in Dezhou City[J]. China Resources Comprehensive Utilization, 2023, 41(5): 171-173.
[12] 张璐涵, 庄富起, 杜妍慧, 等. 2019年山东省德州市和济南市PM2.5中金属污染特征及健康风险评估[J]. 环境卫生学杂志, 2022, 12(11): 825-833. ZHANG Luhan, ZHUANG Fuqi, DU Yanhui, et al. Pollution characteristics of metals in PM2.5 and their health risk assessment in Dezhou and Jinan of Shandong Province, China, 2019[J]. Journal of Environmental Hygiene, 2022, 12(11): 825-833.
[13] Xiao QY, Geng GN, Cheng J, et al. Evaluation of gap-filling approaches in satellite-based daily PM2.5 prediction models[J]. Atmos Environ, 2021, 244: 117921. doi: 10.1016/j.atmosenv.2020.117921
[14] Geng GN, Xiao QY, Liu SG, et al. Tracking air pollution in China: near real-time PM2.5 retrievals from multisource data fusion[J]. Environ Sci Technol, 2021, 55(17): 12106-12115.
[15] Zhao Q, Li SS, Coelho MSZS, et al. Assessment of intraseasonal variation in hospitalization associated with heat exposure in Brazil[J]. JAMA Netw Open, 2019, 2(2): e187901. doi: 10.1001/jamanetworkopen.2018.7901
[16] Ma CC, Yang J, Nakayama SF, et al. Cold spells and cause-specific mortality in 47 Japanese prefectures: a systematic evaluation[J]. Environ Health Perspect, 2021, 129(6): 67001. doi: 10.1289/EHP7109
[17] Luo K, Li RK, Wang ZS, et al. Effect modification of the association between temperature variability and daily cardiovascular mortality by air pollutants in three Chinese cities[J]. Environ Pollut, 2017, 230: 989-999. doi: 10.1016/j.envpol.2017.07.045
[18] Zhao JH, Zhang YM, Ni Y, et al. Effect of ambient temperature and other environmental factors on stroke emergency department visits in Beijing: a distributed lag non-linear model[J]. Front Public Health, 2022, 10: 1034534. doi: 10.3389/fpubh.2022.1034534
[19] Altman DG, Bland JM. Interaction revisited: the diffe-rence between two estimates[J]. BMJ, 2003, 326(7382): 219. doi: 10.1136/bmj.326.7382.219
[20] 张艺, 郑浩, 孙凤霞, 等. 2020—2022年南京市极端气温对居民急救接诊量的影响和归因风险研究[J]. 现代预防医学, 2023, 50(22): 4077-4082. ZHANG Yi, ZHENG Hao, SUN Fengxia, et al. The impact and attributable risk of extreme temperature on the number of emergency ambulance calls in Nanjing[J]. Modern Preventive Medicine, 2023, 50(22): 4077-4082.
[21] Zhan ZY, Yu YM, Qian J, et al. Effects of ambient temperature on ambulance emergency call-outs in the subtropical city of Shenzhen, China[J]. PLoS One, 2018, 13(11): e0207187. doi: 10.1371/journal.pone.0207187
[22] 艾思奇, 秦历杰, 崔英杰, 等. 环境温度暴露对急救呼叫的影响: 基于许昌市和郑州市数据的时间序列分析[J]. 中华预防医学杂志, 2021, 55(2): 194-199. AI Siqi, QIN Lijie, CUI Yingjie, et al. The impact of ambient temperature exposure on emergency calls-a time series analysis based on data of Xuchang and Zhengzhou[J]. Chinese Journal of Preventive Medicine, 2021, 55(2): 194-199.
[23] 王裕新, 曹茹, 黄婧, 等. 不同表观温度水平下大气细颗粒物暴露对人群非意外死亡的影响[J]. 北京大学学报(医学版), 2024, 56(5): 820-827. WANG Yuxin, CAO Ru, HUANG Jing, et al. Impact of fine particulate matter exposure on non-accidental mortality under different apparent temperature levels[J]. Journal of Peking University(Health Sciences), 2024, 56(5): 820-827.
[24] Cui FP, Zheng L, Zhang J, et al. Long-term exposure to fine particulate matter constituents, genetic susceptibility, and incident heart failure among 411,807 adults[J]. Eur J Heart Fail, 2024. doi: 10.1002/ejhf.3486
[25] Bhatnagar A. Cardiovascular effects of particulate air pollution[J]. Annu Rev Med, 2022, 73: 393-406. doi: 10.1146/annurev-med-042220-011549
[26] Hadei M, Naddafi K. Cardiovascular effects of airborne particulate matter: a review of rodent model studies[J]. Chemosphere, 2020, 242: 125204. doi: 10.1016/j.chemosphere.2019.125204
[27] Liu TT, Jiang B, Fu BQ, et al. PM2.5 induces cardiomyoblast senescence via AhR-mediated oxidative stress[J]. Antioxidants(Basel), 2024, 13(7): 786. doi: 10.3390/antiox13070786
[28] Luo B, Liu JT, Fei GQ, et al. Impact of probable interaction of low temperature and ambient fine particulate matter on the function of rats alveolar macrophages[J]. Environ Toxicol Pharmacol, 2017, 49: 172-178. doi: 10.1016/j.etap.2016.12.011
[29] Abrignani MG, Lombardo A, Braschi A, et al. Climatic influences on cardiovascular diseases[J]. World J Cardiol, 2022, 14(3): 152-169.
[30] 孔德慧. 北京地区寒潮—热浪和极端湿度对急性心肌梗死住院的影响研究[D]. 北京: 北京协和医学院, 2020.
[31] Buckley JP, Richardson DB. Seasonal modification of the association between temperature and adult emergency department visits for asthma: a case-crossover study[J]. Environ Health, 2012, 11: 55. doi: 10.1186/1476-069X-11-55
[32] Cheng Y, He KB, Engling G, et al. Brown and black carbon in Beijing aerosol: implications for the effects of brown coating on light absorption by black carbon[J]. Sci Total Environ, 2017, 599: 1047-1055. doi: 10.1016/j.scitotenv.2017.05.061
[1] 刘军,李欢,张仕玉,张鹏,艾思奇,田飞,林华亮. 湖北省新型冠状病毒肺炎患者发生重型、危重型的影响因素[J]. 山东大学学报 (医学版), 2020, 58(10): 60-65.
[2] 孙玉亮,林俊豪,崔宜栋,裴艳涛,王俊涛,王刚,许庆家,朱磊. 自体皮肤冷冻保存回植技术在上肢脱套伤治疗中的应用[J]. 山东大学学报 (医学版), 2018, 56(9): 35-40.
[3] 宫妍婕,王龙,董来东,李栋,宋光民,鞠秀丽. 不同冻存液及降温方式对心脏瓣膜组织学及免疫原性的影响[J]. 山东大学学报(医学版), 2016, 54(8): 44-49.
[4] 李彦芬,王敏忠,张镛,杜怡峰,郭守刚,李春霞,刘雪平. 亚低温对过氧化氢损伤后脑微血管内皮细胞NF-κB表达的影响[J]. 山东大学学报(医学版), 2012, 50(8): 10-.
[5] 黄杰1,李丽茹2,赵瑞波3. 病变侧亚低温对大鼠局灶性脑缺血再灌注后Survivin及Caspase-3表达的影响[J]. 山东大学学报(医学版), 2011, 49(6): 24-27.
[6] 杨健军1,3,杜怡峰2,韩晔3,胡浩然3. 脑局部亚低温治疗对急性脑梗死患者血清NSE和S-100蛋白的影响[J]. 山东大学学报(医学版), 2011, 49(4): 103-.
[7] 王利红,连方,张宁. 改良Hemistraw与Cryoleaf法对人卵和胚胎玻璃化保存效果的比较[J]. 山东大学学报(医学版), 2009, 47(12): 70-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!