您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2024, Vol. 62 ›› Issue (2): 10-19.doi: 10.6040/j.issn.1671-7554.0.2024.0089

• 基础医学 • 上一篇    

饮食诱导肥胖雌鼠棕色脂肪组织蛋白质组学分析

梁中昊1,庄向华1,2,黄珊1,韩晓琳1,华梦羽1,琚丽萍1,2,陈诗鸿1,2   

  1. 1.山东大学第二医院内分泌代谢科, 山东 济南 250033;2.山东大学第二医院肾脏多学科创新医学中心, 山东 济南 250033
  • 发布日期:2024-03-29
  • 通讯作者: 陈诗鸿. E-mail:chenshihong@sdu.edu.cn 琚丽萍. E-mail:201862018079@email.sdu.edu.cn
  • 基金资助:
    国家自然科学基金(81900774);山东省自然科学基金联合基金(ZR2021LSW016)

Proteomic analysis of brown adipose tissue in diet-induced obese female mice

LIANG Zhonghao1, ZHUANG Xianghua1,2, HUANG Shan1, HAN Xiaolin1, HUA Mengyu1, JU Liping1,2, CHEN Shihong1,2   

  1. 1. Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, Shandong, China;
    2. Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, Jinan 250033, Shandong, China
  • Published:2024-03-29

摘要: 目的 探讨高脂饮食(high-fat diet, HFD)对雌性小鼠棕色脂肪蛋白组学的影响。 方法 构建高脂饮食诱导的肥胖雌鼠模型。对照组(CON组)小鼠给予普通饮食,实验组(HFD组)小鼠给予高脂饮食,均喂养21周,每周记录小鼠体质量,使用小动物体脂分析仪测量身体成分,通过经腹葡萄糖耐量试验(intraperitoneal glucose tolerance test, IPGTT)和胰岛素耐量试验(insulin tolerance test, ITT)评估小鼠葡萄糖耐量和胰岛素耐量。处死小鼠后迅速收集棕色脂肪(brown adipose tissue, BAT)标本于液氮中,后续进行液相色谱-串联质谱检测(liquid chromatography-tandem mass spectrometry, LC-MS)及蛋白组学数据分析(n=4)。 结果 与CON组相比,HFD组小鼠体质量增加,体脂含量增加,糖耐量和胰岛素耐量受损。蛋白组学分析以差异倍数(fold change, FC)>1.5或<0.67,且P<0.05为标准筛选差异蛋白,聚类分析热图结果显示,HFD小鼠Ucp1水平升高,蛋白免疫印迹(Western blotting, WB)结果显示,HFD小鼠棕色脂肪中Ucp1水平更高;亚细胞定位分析表明线粒体是含有差异蛋白数目最多的细胞器;基因本体(gene ontology, GO)功能和京都基因和基因组数据库(Kyoto Encyclopedia of Genes and Genomes, KEGG)通路富集分析显示:与CON组相比,HFD组下调蛋白主要与肌肉收缩有关,涉及钙信号通路等,而上调蛋白主要与脂质分解代谢有关,涉及脂质氧化过程以及产热、氧化磷酸化等通路;蛋白质相互作用分析提示网络中心蛋白主要与脂质合成、脂肪酸β氧化有关。 结论 肥胖状态下,雌鼠BAT产热通路激活,并伴有脂肪酸β氧化增强和脂肪合成减弱。

关键词: 饮食诱导肥胖, 棕色脂肪, 产热, 蛋白质组学

Abstract: Objective To investigate the effects of high-fat diet(HFD)on the proteomics of brown adipose tissue(BAT)in female mice. Methods The obese mice models were established with HFD(HFP group). Mice in the control group were fed with normal diet, while those in the experimental group were fed with HFD. Both groups were fed for 21 weeks and body weight were detected weekly. Body composition was measured with small animal body composition analyzer. The glucose tolerance and insulin tolerance were measured with intraperitoneal glucose tolerance test(IPGTT)and insulin tolerance test(ITT)respectively. After the mice were sacrificed, BAT was quickly collected into liquid nitrogen, and then 4 samples from either group were analyzed with liquid chromatography-tandem mass spectrometry(LC-MS)and proteomics. Results Compared with the control group, the HFD group had significantly increased body weight and fat content, but impaired glucose tolerance and insulin tolerance. Differential proteins were screened with FC>1.5 or <0.67 and P<0.05. Cluster heatmap revealed an increased Ucp1 level in HFD mice, and Western blotting further confirmed higher Ucp1 expression in HFD mice. Subcellular localization analysis indicated that mitochondria were the organelles containing the largest number of differential proteins. Gene ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)analyses showed that the down-regulated proteins in the HFD group were mainly involved with muscle contraction and calcium signaling pathway, while the up-regulated proteins with lipid catabolism, lipid oxidation process, thermogenesis, oxidative phosphorylation and other pathways. Protein interaction analysis suggested that the central proteins of the network were associated with lipid synthesis and fatty acid β oxidation. Conclusion The thermogenic pathway of BAT was enhanced in obese female mice, accompanied with increased oxidation of fatty acid β and decreased fat synthesis.

Key words: Diet-induced obesity, Brown adipose tissue, Thermogenesis, Proteomics

中图分类号: 

  • R589.2
[1] GBD 2015 Obesity Collaborators. Health effects of overweight and obesity in 195 countries over 25 years[J]. N Engl J Med, 2017, 377(1): 13-27.
[2] Lin X, Li H. Obesity: epidemiology, pathophysiology, and therapeutics[J]. Front Endocrinol(Lausanne), 2021, 12: 706978. doi: 10.3389/fendo.2021.706978.
[3] Martin SS, Aday AW, Almarzooq ZI, et al. 2024 Heart disease andstroke statistics: A Report of US and Global Data From the American Heart Association[J]. Circulation, 2024. doi: 10.1161/CIR.0000000000001209.
[4] 张淑洁, 何云, 张思奇, 等. 肥胖高血压患者血压变异性的研究进展[J]. 中华高血压杂志, 2020, 28(6): 580-586.
[5] Ronald CK, Guoxiao W, Kevin YL. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome[J]. J Clin Invest, 2019, 129(10): 3990-4000.
[6] Ong FJ, Ahmed BA, Oreskovich SM, et al. Recent advances in the detection of brown adipose tissue in adult humans: a review[J]. Clin Sci(Lond), 2018, 132(10): 1039-1054.
[7] Jurado-Fasoli L, Sanchez-Delgado G, Alcantara JMA, et al. Adults with metabolically healthy overweight or obesity present more brown adipose tissue and higher thermogenesis than their metabolically unhealthy counterparts[J]. EBioMedicine, 2024,100: 104948. doi:10.1016/j.ebiom.2023.104968.
[8] Brahmbhatt P, Ataei F, Parent EE, et al. Atypically intense pharmacologically induced brown fat activation on FDG PET/CT[J]. Clin Nucl Med, 2023, 48(3): 233-236.
[9] Cani PD, Van Hul M. Gut microbiota in overweight and obesity: crosstalk with adipose tissue[J]. Nat Rev Gastroenterol Hepatol, 2023. doi: 10.1038/s41575-023-00867-z.
[10] Ikeda K, Kang Q, Yoneshiro T, et al. UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis[J]. Nat Med, 2017, 23(12): 1454-1465.
[11] Kazak L, Chouchani ET, Jedrychowski MP, et al. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat[J]. Cell, 2015, 163(3): 643-655.
[12] Gómez-García I, Trepiana J, Fernández-Quintela A, et al. Sexual dimorphism in brown adipose tissue activation and white adipose tissue browning[J]. Int J Mol Sci, 2022, 23(15): 8250. doi: 10.3390/ijms23158250.
[13] Patel S, Sparman NZR, Arneson D, et al. Mammary duct luminal epithelium controls adipocyte thermogenic programme[J]. Nature, 2023, 620(7972): 192-199.
[14] Mauvais-Jarvis F. Sex differences in energy metabolism: Natural selection, mechanisms and consequences[J]. Nat Rev Nephrol, 2024, 20(1): 56-69.
[15] Maric I, Krieger JP, van der Velden P, et al. Sex and species differences in the development of diet-induced obesity and metabolic disturbances in rodents[J]. Front Nutr, 2022, 9: 828522. doi: 10.3389/fnut.2022.828522.
[16] Wang C, Jiang S, Cheng J, et al. Deciphering the difference of casein fraction in human milk associated with infant gender using quantitative proteomics[J]. Int J Biol Macromol, 2023, 247: 125796. doi: 10.1016/j.ijbiomac.2023.125796.
[17] 李雁儒, 李娟, 李培龙, 等. 胰腺癌不同进展期血清外泌体蛋白组学分析[J]. 山东大学学报(医学版), 2022, 60(10): 33-41. LI Yanru, LI Juan, LI Peilong, et al. Proteomic analysis of serum exosomes in pancreatic cancer withdifferent stages of progress[J]. Journal of Shandong University(Health Sciences), 2022, 60(10): 33-41.
[18] Seale P, Bjork B, Yang W, et al. PRDM16 controls a brown fat/skeletal muscle switch[J]. Nature, 2008, 454(7207): 961-967.
[19] Li F, Jing J, Movahed M, et al. Epigenetic interaction between UTX and DNMT1 regulates diet-induced myogenic remodeling in brown fat[J]. Nat Commun, 2021, 12(1): 6838. doi: 10.1038/s41467-021-27141-7.
[20] Kyriazis ID, Vassi E, Alvanou M, et al. The impact of diet upon mitochondrial physiology[J]. Int J Mol Med, 2022, 50(5): 135.
[21] Takeda Y, Harada Y, Yoshikawa T, et al. Mitochondrial energy metabolism in the regulation of thermogenic brown fats and human metabolic diseases[J]. Int J Mol Sci, 2023, 24(2): 1352. doi: 10.3390/ijms24021352.
[22] Jingyi C, Qi Z, Lin L, et al. Global transcriptome analysis of brown adipose tissue of diet-induced obese mice[J]. Int J Mol Sci, 2018, 19(4): 1095. doi: 10.3390/ijms19041095.
[23] Kim HS, Ryoo ZY, Choi SU, et al. Gene expression profiles reveal effect of a high-fat diet on the development of white and brown adipose tissues[J]. Gene, 2015, 565(1): 15-21.
[24] Schmid GM, Converset V, Walter N, et al. Effect of highct o diet on the expression of proteins in muscle, adipose tissues, and liver of C57BL/6 mice[J]. Proteomics, 2004, 4(8): 2270-2282.
[25] Rosen ED, Spiegelman BM. What we talk about when we talk about fat[J]. Cell, 2014, 156(1-2): 20-44.
[26] Schlaepfer IR, Joshi M. CPT1A-mediated fat oxidation, mechanisms, and therapeutic potential[J]. Endocrinology, 2020, 161(2): bqz046. doi: 10.1210/endocr/bqz046.
[27] Tonazzi A, Giangregorio N, Console L, et al. The mitochondrial carnitine acyl-carnitine carrier(SLC25A20): molecular mechanisms of transport, role in redox sensing and interaction with drugs[J]. Biomolecules, 2021, 11(4): 521. doi: 10.3390/biom11040521.
[28] Furuhashi M, Hotamisligil GS. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets[J]. Nat Rev Drug Discov, 2008, 7(6): 489-503.
[29] Gallardo-Montejano VI, Yang C, Hahner L, et al. Perilipin 5 links mitochondrial uncoupled respiration in brown fat to healthy white fat remodeling and systemic glucose tolerance[J]. Nat Commun, 2021, 12(1): 3320. doi: 10.1038/s41467-021-23601-2.
[30] Sanchez-Gurmaches J, Tang Y, Jespersen NZ, et al. Brown fat AKT2 is a cold-induced kinase that stimulates ChREBP-mediated de novo lipogenesis to optimize fuel storage and thermogenesis[J]. Cell Metab, 2018, 27(1): 195-209.e6.
[31] Da Eira D, Jani S, Stefanovic M, et al. The ketogenic diet promotes triacylglycerol recycling in white adipose tissue and uncoupled fat oxidation in brown adipose tissue, but does not reduce adiposity in rats[J]. J Nutr Biochem, 2023, 120: 109412. doi: 10.1016/j.jnutbio.2023.109412.
[32] von Essen G, Lindsund E, Maldonado EM, et al. Highly recruited brown adipose tissue does not in itself protect against obesity[J]. Mol Metab, 2023, 76: 101782. doi: 10.1016/j.molmet.2023.101782.
[1] 李雁儒,李娟,李培龙,杜鲁涛,王传新. 胰腺癌不同进展期血清外泌体蛋白质组学分析[J]. 山东大学学报 (医学版), 2022, 60(10): 33-41.
[2] 陈立晓,英信江,陈歆维,王菲,孙臻峰,董频. 下咽鳞癌蛋白质谱鉴定及预后靶分子筛选[J]. 山东大学学报 (医学版), 2021, 59(9): 140-147.
[3] 张华宇,殷思源,刘健,马嘉旭,宋茹,曹国起,王一兵. 氧糖剥夺条件下培养表皮干细胞的定量蛋白质组学分析[J]. 山东大学学报 (医学版), 2021, 59(4): 17-27.
[4] 刘亚飞, 张奇舒, 袁首道, 陈健行. HPV永生化细胞系与SiHa细胞系蛋白质表达差异的质谱分析[J]. 山东大学学报(医学版), 2015, 53(3): 22-26.
[5] 王小岳, 王道光, 郭继生, 李翠玲, 荆瑞瑞, 吕鑫, 陈新骏, 杨静华. 非标记定量法对乙醇诱导肝损伤的蛋白质组学研究[J]. 山东大学学报(医学版), 2015, 53(3): 12-16.
[6] 朱晓丽1,郭淑玲1,苏磊1,冯玉新2,袁方曙1. 蠕形螨全蛋白提取及相对分子量鉴定[J]. 山东大学学报(医学版), 2014, 52(5): 58-62.
[7] 张焕丽1,崔亚洲2,周小艳2,尚伟1. 人类癫痫脑组织的蛋白质组学研究[J]. 山东大学学报(医学版), 2013, 51(3): 80-84.
[8] 王海滨,马伟明,萧畔,马天加,张怀强. 热休克蛋白60在多西紫杉醇治疗激素非依赖性前列腺癌过程中的差异表达[J]. 山东大学学报(医学版), 2012, 50(8): 46-50.
[9] 张华1,3, 刘雪霞2, 宋西成3,雷大鹏1,潘新良1,张庆泉3. T1期声门区喉癌差异蛋白质组学的初步分析[J]. 山东大学学报(医学版), 2012, 50(2): 110-115.
[10] 萧畔1,张怀强1,崔亚洲2,赵升田1,马天加1,周春文1. 多西紫杉醇诱导前列腺癌PC3细胞凋亡的蛋白质组学研究[J]. 山东大学学报(医学版), 2012, 50(10): 77-.
[11] . 前列腺癌细胞LNCaP中雄激素依赖性和雄激素非依赖性蛋白差异性表达研究[J]. 山东大学学报(医学版), 2009, 47(9): 62-65.
[12] . 乳腺癌转移相关蛋白蛋白质组学初步研究[J]. 山东大学学报(医学版), 2009, 47(7): 61-64.
[13] 柏淑美,刘师莲,杨银荣,郭绪晓,秦延江,邓小梅 . RRMS疾病潜在生物标记物关系探讨[J]. 山东大学学报(医学版), 2008, 46(4): 340-343.
[14] 秦延江,刘师莲,杨银荣,柏淑美,张旭华,邓小梅 . 中枢神经系统脱髓鞘疾病脑脊液蛋白质组学研究[J]. 山东大学学报(医学版), 2008, 46(1): 9-14.
[15] 靖永胜,刘师莲,张旭华,吴晓青,杨银荣,王伟 . 肾癌及癌旁组织蛋白质组学的比较研究[J]. 山东大学学报(医学版), 2007, 45(8): 781-784.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!