山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (4): 95-102.doi: 10.6040/j.issn.1671-7554.0.2022.0919
• 公共卫生与管理学 • 上一篇
程传龙1,韩闯1,房启迪1,刘盈1,杨淑霞2,崔峰2,刘靖靖2,李秀君1
CHENG Chuanlong1, HAN Chuang1, FANG Qidi1, LIU Ying1, YANG Shuxia2, CUI Feng2, LIU Jingjing2, LI Xiujun1
摘要: 目的 分析淄博市肺癌发病的时空分布,并基于时空统计模型探究肺癌发病的环境影响因素。 方法 收集2015至2019年淄博市肺癌发病报告数据,描述其时空流行病学特征;采用时空地理加权回归(GTWR)模型探索肺癌发病与环境影响因素之间的关系,并与传统模型比较拟合效果。 结果 淄博市2015至2019年肺癌发病率呈上升趋势,5年平均年发病率为67.43/10万。肺癌发病率空间分布存在聚集性,中部地区发病率较低,其周围及南部地区发病率较高。GTWR模型结果显示,不同位置的环境因素对肺癌发病的影响不同。经济发展水平可能影响空气污染物与肺癌发病之间的关系,经济发展水平低的地区,空气污染对肺癌发病影响更大。与传统模型相比,GTWR模型拥有更好的拟合效果。 结论 淄博市肺癌发病率与环境影响因素之间存在时空相关性,当地应合理分配医疗资源,在关注空气污染较重地区的同时,还应着重针对经济发展水平较低的地区开展肺癌防治工作,提高当地医疗服务水平。
中图分类号:
[1] 李翔, 高申. 1990—2019年中国居民肺癌发病、患病和死亡趋势分析[J]. 中国慢性病预防与控制, 2021, 29(11): 821-826. LI Xiang, GAO Shen. Trend analysis of the incidence, morbidity and mortality of lung cancer in China from 1990 to 2019[J]. Chinese Journal of Prevention and Control of Chronic Diseases, 2021, 29(11): 821-826. [2] 路友华, 王炳翔, 王家林, 等. 中国居民1990—2019年肺癌及其危险因素疾病负担变化趋势分析[J]. 中国公共卫生, 2022, 38(5): 513-517. LU Youhua, WANG Bingxiang, WANG Jialin, et al. Changing trend in disease burden of lung cancer and its risk factors among Chinese residents, 1990—2019[J]. Chinese Journal of Public Health, 2022, 38(5): 513-517. [3] 孙鑫, 覃文进, 刘理礼, 等. 肺癌发病危险因素最新研究进展[J]. 现代肿瘤医学, 2022, 30(4): 753-756. SUN Xin, QIN Wenjin, LIU Lili, et al. Recent advances of research on risk factors of lung cancer[J]. Journal of Modern Oncology, 2022, 30(4): 753-756. [4] 辛雯艳,黄磊,闫贻忠. 2005—2014年中国老年人肺癌发病的时间趋势分析[J]. 现代预防医学, 2020, 47(12): 2113-2116. XIN Wenyan, HUANG Lei, YAN Yizhong, et al. Analysis on the time trend of lung cancer incidence in the elderly Chinese between 2005 and 2014[J]. Modern Preventive Medicine, 2020, 47(12): 2113-2116. [5] 丁贤彬, 唐文革, 吕晓燕, 等. 人口老龄化对重庆市肺癌发病影响的定量分析[J]. 中国肿瘤, 2017, 26(6): 442-446. DING Xianbin, TANG Wenge, LYU Xiaoyan, et al. Impact of aging on incidence of lung cancer in Chongqing Municipality[J]. China Cancer, 2017, 26(6): 442-446. [6] 魏海涛, 刘岩, 田智慧, 等. 河南省肺癌空间分布格局及环境因素影响[J]. 地理学报, 2022, 77(1): 245-258. WEI Haitao, LIU Yan, TIAN Zhihui, et al. Spatial distribution pattern and environmental impact of lung cancer in Henan[J]. Acta Geographica Sinica, 2022, 77(1): 245-258. [7] 俞建, 俞洁, 应倩, 等. 浙江省基于卫星遥感数据的气溶胶光学厚度与肺癌的相关性[J]. 肿瘤防治研究, 2020, 47(10): 776-781. YU Jian, YU Jie, YING Qian, et al. Association of aerosol optical depth based on satellite remote sensing data and lung cancer in Zhejiang Province[J]. Cancer Research on Prevention and Treatment, 2020, 47(10): 776-781. [8] Xing DF, Xu CD, Liao XY, et al. Spatial association between outdoor air pollution and lung cancer incidence in China[J]. BMC Public Health, 2019, 19(1): 1377. [9] Huang B, Wu B, Barry M. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices[J]. Int J Geogr Inf Sci, 2010, 24(3): 383-401. [10] Wu B, Li R, Huang B. A geographically and temporally weighted autoregressive model with application to housing prices[J]. Int J Geogr Inf Sci, 2014, 28(5): 1186-1204. [11] 刘芳盈, 刘晓利, 张殿平, 等. 2012—2014年淄博市肺癌死亡的空间分析[J]. 预防医学论坛, 2017, 23(8): 575-578. LIU Fangying, LIU Xiaoli, ZHANG Dianping, et al. Spatial analysis on lung cancer mortality, Zibo City, 2012—2014[J]. Preventive Medicine Tribune, 2017, 23(8): 575-578. [12] Wei J, Li Z, Lyapustin A, et al. Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: spatiotemporal variations and policy implications[J]. Remote Sens Environ, 2021, 252: 112128. [13] Wei J, Li Z, Cribb M, et al. Improved 1 km resolution PM2.5 estimates across China using enhanced space-time extremely randomized trees[J]. Atmos Chem Phys, 2020, 20(6): 3273-3289. [14] 张立贤, 任浙豪, 陈斌, 等. 中国长时间序列逐年人造夜间灯光数据集(1984—2020). 国家青藏高原科学数据中心, 2021[EB/OL].(2022-04-18)[2022-07-01]. https://data.tpdc.ac.cn/zh-hans/data/e755f1ba-9cd1-4e43-98ca-cd081b5a0b3e/?q=. [15] 徐新良. 中国GDP空间分布公里网格数据集. 资源环境科学数据注册与出版系统, 2017[EB/OL]. [2022-07-01]. https://www.resdc.cn/DOI/DOI.aspx?DOIID=32. [16] Bondarenko M, Kerr D, Sorichetta A, et al. Estimates of 2020 total number of people per grid square, adjusted to match the corresponding UNPD 2020 estimates and broken down by gender and age groupings, produced using Built-Settlement Growth Model(BSGM)outputs. WorldPop, 2020 [EB/OL].(2020-11-30)[2022-07-01]. https://hub.worldpop.org/geodata/summary?id=50346. [17] 张松林, 张昆. 全局空间自相关Moran指数和G系数对比研究[J]. 中山大学学报(自然科学版), 2007, 46(4): 93-97. ZHANG Songlin, ZHANG Kun. Comparison between general Morans index and Getis-Ord General G of spatial autocorrelation[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2007, 46(4): 93-97. [18] 马雄威. 线性回归方程中多重共线性诊断方法及其实证分析[J]. 华中农业大学学报(社会科学版), 2008(2): 78-81, 85. doi: 10.13300/j.cnki.hnwkxb.2008.02.005. MA Xiongwei. Diagnosis and empirical analysis on multicollinearity in linear regression model[J]. Journal of Huazhong Agricultural University(Social Sciences Edition), 2008(2): 78-81, 85. doi:10.13300/j.cnki.hnwkxb.2008.02.005. [19] Kletting P, Glatting G. Model selection for time-activity curves: the corrected Akaike information criterion and the F-test[J]. Z Med Phys, 2009, 19(3): 200-206. [20] Huang J, Deng Y, Tin MS, et al. Distribution, risk factors, and temporal trends for lung cancer incidence and mortality: a global analysis[J]. Chest, 2022, 161(4): 1101-1111. [21] 董婷, 成姝雯, 胥馨尹, 等. 2009—2017年四川省肿瘤登记地区肺癌发病和死亡流行特征分析[J]. 中国肿瘤, 2022, 31(6): 437-441. DONG Ting, CHENG Shuwen, XU Xinyin, et al. Characteristics of lung cancer incidence and mortality in Sichuan cancer registration areas from 2009 to 2017[J]. China Cancer, 2022, 31(6): 437-441. [22] 刘茵,陈琼,郭兰伟,等. 2017年河南省肺癌流行现状及2010—2017年趋势分析[J]. 中国肿瘤, 2022, 31(2): 112-118. LIU Yin, CHEN Qiong, GUO Lanwei, et al. Incidence and mortality of lung vancer in Henan Province in 2017 and trend from 2010 to 2017[J]. China Cancer, 2022, 31(2): 112-118. [23] Galffy G, Vastag A, Bogos K, et al. Significant regional differences in lung cancer incidence in hungary: epidemiological study between 2011 and 2016[J]. Pathol Oncol Res, 2021, 27: 1609916. doi: 10.3389/pore.2021.1609916. [24] Maiti A, Zhang Q, Sannigrahi S, et al. Exploring spatiotemporal effects of the driving factors on COVID-19 incidences in the contiguous United States[J]. Sustain Cities Soc, 2021, 68: 102784. doi: 10.1016/j.scs.2021.102784. [25] Wu S, Du Z, Wang Y, et al. Modeling spatially anisotropic nonstationary processes in coastal environments based on a directional geographically neural network weighted regression[J]. Sci Total Environ, 2020, 709: 136097. doi: 10.1016/j.scitotenv.2019.136097. [26] Sifriyani S, Rasjid M, Rosadi D, et al. Spatial-temporal epidemiology of COVID-19 using a geographically and temporally weighted regression model[J]. Symmetry, 2022, 14(4): 742. [27] Guo B, Wang Y, Pei L, et al. Determining the effects of socioeconomic and environmental determinants on chronic obstructive pulmonary disease(COPD)mortality using geographically and temporally weighted regression model across Xian during 2014-2016[J]. Sci Total Environ, 2021, 756:143869. doi: 10.1016/j.scitotenv.2020.143869. [28] Wang Y, Guo B, Pei L, et al. The influence of socioeconomic and environmental determinants on acute myocardial infarction(AMI)mortality from the spatial epidemiological perspective[J]. Environ Sci Pollut Res Int, 2022, 29(42): 63494-63511. [29] Cao Q, Rui G, Liang Y. Study on PM2.5 pollution and the mortality due to lung cancer in China based on geographic weighted regression model[J]. BMC Public Health, 2018, 18(1): 925. [30] 白羽, 倪洋,曾强. 基于队列研究的空气污染中PM2.5与肺癌关联性的Meta分析[J]. 公共卫生与预防医学, 2020, 31(4): 5-8. BAI Yu, NI Yang, ZENG Qiang. A meta-analysis on association between PM2.5 exposure and lung cancer based on cohort studies[J]. Journal of Public Health and Preventive Medicine, 2020, 31(4): 5-8. [31] Coleman NC, Burnett RT, Ezzati M, et al. Fine particulate matter exposure and cancer incidence: analysis of SEER cancer registry data from 1992-2016[J]. Environ Health Perspect, 2020, 128(10): 107004. [32] You W, Ruhli FJ, Henneberg RJ, et al. Greater family size is associated with less cancer risk: an ecological analysis of 178 countries[J]. BMC Cancer, 2018, 18(1): 924. [33] Wang SC, Sung WW, Kao YL, et al. The gender difference and mortality-to-incidence ratio relate to health care disparities in bladder cancer: national estimates from 33 countries[J]. Sci Rep, 2017, 7(1): 4360. [34] Ouyang W, Gao B, Cheng H, et al. Exposure inequality assessment for PM2.5 and the potential association with environmental health in Beijing[J]. Sci Total Environ, 2018, 635: 769-778. doi: 10.1016/j.scitotenv.2018.04.190. [35] Zhang H, Tripathi NK. Geospatial hot spot analysis of lung cancer patients correlated to fine particulate matter(PM2.5)and industrial wind in Eastern Thailand[J]. J Clean Prod, 2018, 170: 407-424. [36] Yang Z, Zheng R, Zhang S, et al. Comparison of cancer incidence and mortality in three GDP per capita levels in China, 2013[J]. Chin J Cancer Res, 2017, 29(5): 385-394. |
[1] | 钟璐,薛付忠. 基于贝叶斯网络不确定性推理的肺癌风险预测模型[J]. 山东大学学报 (医学版), 2023, 61(4): 86-94. |
[2] | 杨咏青,赵鹏,汪玉,马文静,田迷迷,程亚旎,祖璐,林祥涛. 细胞外容积分数对62例不同病理类型肺癌的诊断价值[J]. 山东大学学报 (医学版), 2023, 61(2): 88-94. |
[3] | 韩靖,贾春玲. 肺癌患者胸外手术前治疗牙周基础疾病对预防术后肺炎发生的效果评价[J]. 山东大学学报 (医学版), 2022, 60(9): 113-118. |
[4] | 高中霞,张铭,樊明德,谭晨阳,王梦迪,王超,樊跃飞,丁守銮,王成伟. 伽玛刀治疗81例肺癌脑转移瘤的疗效及预后因素[J]. 山东大学学报 (医学版), 2022, 60(8): 44-49. |
[5] | 王福立,孙银萍,秦杰,荣建胜. DC-CIK细胞联合EGFR-TKI治疗35例老年晚期EGFR突变肺癌的效果[J]. 山东大学学报 (医学版), 2022, 60(7): 110-117. |
[6] | 秦静,杨飞,陈谦,夏涵岱,刘延国,王秀问. 晚期驱动基因阴性、PD-L1表达阴性非鳞非小细胞肺癌一线治疗方案的网状Meta分析[J]. 山东大学学报 (医学版), 2022, 60(7): 74-82. |
[7] | 陈兆波,方敏,薛浩然,刘春艳. 去泛素化酶USP35促进非小细胞肺癌细胞迁移和侵袭[J]. 山东大学学报 (医学版), 2022, 60(4): 30-37. |
[8] | 马瑞杰,朱良明,左太阳,李春海,张楠,孙志钢. 微波消融治疗非小细胞肺癌根治术后肺寡转移瘤的预后分析[J]. 山东大学学报 (医学版), 2022, 60(12): 63-68. |
[9] | 韩丁培,严越,曹羽钦,孙昕,胡琰霞,汪敏娴,罗艳,施咏梅,谢青,杭钧彪,李鹤成. 加速康复外科理念在胸外科临床实践指导的瑞金医院专家共识[J]. 山东大学学报 (医学版), 2022, 60(11): 11-16. |
[10] | 高树庚. 加速康复外科在肺癌围术期管理中的应用[J]. 山东大学学报 (医学版), 2022, 60(11): 1-10. |
[11] | 刘会宁,彭军,任迎春,杨光,王文豪,刘金锋,田勍. 34例胸腔镜下肺楔形切除与21例肺段切除对位于肺段P区的ⅠA1期非小细胞肺癌治疗比较[J]. 山东大学学报 (医学版), 2022, 60(11): 38-43. |
[12] | 彭岳,刘雷,李原,别凤龙,周博伦,李润泽,冀瑛,白广宇,谭锋维,高禹舜,牟巨伟,薛奇,邱斌,高树庚. 解剖性部分肺叶切除术及围术期加速康复外科的临床综合应用[J]. 山东大学学报 (医学版), 2022, 60(11): 44-53. |
[13] | 高会江,魏煜程. 微创袖式肺叶切除手术:免疫治疗时代的机遇和挑战[J]. 山东大学学报 (医学版), 2022, 60(11): 23-27. |
[14] | 丁子琛,王浩桦,周立雯,丛慧文,李承圣,包绮晗,杨毅,王廉源,王素珍,石福艳. 基于贝叶斯累加回归树模型的非小细胞肺癌患者个性化疗效研究[J]. 山东大学学报 (医学版), 2022, 60(10): 92-98. |
[15] | 于金明,颜薇薇,陈大卫. 肺癌放射免疫新实践[J]. 山东大学学报 (医学版), 2021, 59(9): 1-8. |
|