山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (3): 1-12.doi: 10.6040/j.issn.1671-7554.0.2021.1036
• 基础医学 •
苑宝文1,王沛2,3,黄蔚1,2
YUAN Baowen1, WANG Pei2,3, HUANG Wei1,2
摘要: 目的 通过代谢组学和转录组学技术,探讨组蛋白去乙酰化酶SIRT1对胰腺癌代谢的调控作用及其作用机制。 方法 分析TCGA、GTEx和HPA等数据库中胰腺癌和正常组织的数据,鉴定SIRT1的表达。构建6组SIRT1稳定敲减和对照的胰腺癌PANC-1细胞系,分别应用UHPLC-MS/MS和高通量RNA-seq技术测量代谢物和基因表达水平。探索差异代谢物参与的代谢通路及与药物反应性和耐药性的关系。 结果 TCGA和GTEx数据分析发现,SIRT1在胰腺癌中的表达显著高于正常组织;HPA数据库进一步证实了SIRT1蛋白的高表达。非靶向代谢组检测和高通量转录组测序分别鉴定出59个代谢物和688个基因的差异有统计学意义。差异代谢物主要富集在癌症中胆碱的代谢、嘧啶代谢、ABC转运等代谢通路。有14个显著差异的基因参与了SIRT1调控的代谢通路。这些基因主要富集在嘌呤代谢信号通路,参与ATP结合和小分子代谢等生物过程。CARE分析显示,SIRT1高表达会促使大量抗肿瘤药物出现高反应性,同时也会使部分药物出现耐药性。 结论 SIRT1对胰腺癌代谢有调控作用,为SIRT1参与胰腺癌代谢的调控机制研究和胰腺癌的靶向治疗奠定了基础。
中图分类号:
[1] Martinez-Reyes I, Chandel NS. Cancer metabolism: looking forward [J]. Nat Rev Cancer, 2021, 21(10): 669-680. [2] Hay N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? [J]. Nat Rev Cancer, 2016, 16(10): 635-649. [3] Xu D, Wang Z, Xia Y, et al. The gluconeogenic enzyme PCK1 phosphorylates INSIG1/2 for lipogenesis [J]. Nature, 2020, 580(7804): 530-535. [4] Johansson HJ, Socciarelli F, Vacanti NM, et al. Breast cancer quantitative proteome and proteogenomic landscape [J]. Nat Commun, 2019, 10(1): 1600. [5] Pascual G, Avgustinova A, Mejetta S, et al.Targeting metastasis-initiating cells through the fatty acid receptor CD36 [J]. Nature, 2017, 541(7635): 41-45. [6] Aird KM,Zhang R. Nucleotide metabolism, oncogene-induced senescence and cancer[J]. Cancer Lett, 2015, 356(2 Pt A): 204-210. [7] Release Notice-Canadian Cancer Statistics: a 2020 special report on lung cancer [J]. Health Promot Chronic Dis Prev Can, 2020, 40(9): 325. [8] 张晓璐, 王丽莉, 陈凯明, 等. 组蛋白去乙酰化酶SIRT1经Toll样受体4途径对巨噬细胞凋亡的调控[J]. 山东大学学报(医学版), 2020, 58(12): 8-14. ZHANG Xiaolu, WANG Lili, CHEN Kaiming, et al. Mechanism of histone deacetylase SIRT1 inhibiting macrophages apoptosis via TLR4 signaling pathway [J]. Journal of Shandong University(Health Sciences), 2020, 58(12): 8-14. [9] Mei Z, Zhang X, Yi J, et al. Sirtuins in metabolism, DNA repair and cancer [J]. J Exp Clin Cancer Res, 2016, 35(1): 182. [10] Chalkiadaki A,Guarente L. The multifaceted functions of sirtuins in cancer [J]. Nat Rev Cancer, 2015, 15(10): 608-624. [11] Knight JR, Milner J. SIRT1, metabolism and cancer [J]. Curr Opin Oncol, 2012, 24(1): 68-75. [12] Yarahmadi S, Abdolvahabi Z, Hesari Z, et al. Inhibition of sirtuin 1 deacetylase by miR-211-5p provides a mechanism for the induction of cell death in breast cancer cells [J]. Gene, 2019, 711: 143939. doi: 10.1016/j.gene.2019.06.029. [13] Ji K, Sun X, Liu Y, et al. Regulation of apoptosis and radiation sensitization in lung cancer cells via the Sirt1/NF-kappaB/Smac pathway [J]. Cell Physiol Biochem, 2018, 48(1): 304-316. [14] 郑荣寿, 孙可欣, 张思维, 等. 2015年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2019, 41(1): 19-28. ZHENG Rongshou, SUN Kexin, ZHANG Siwei, et al. Report of cancer epidemiology in China, 2015 [J]. Chinese Journal of Oncology, 2019,41(1): 19-28. [15] Jin J, Chu Z, Ma P, et al. SIRT1 promotes the proliferation and metastasis of human pancreatic cancer cells [J]. Tumour Biol, 2017, 39(3): 1010428317691180. [16] Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism [J]. Nat Rev Cancer, 2011, 11(2): 85-95. [17] Mcdonald OG, Li X, Saunders T, et al. Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis [J]. Nat Genet, 2017, 49(3): 367-376. [18] Chang CH, Qiu J, Osullivan D, et al. Metabolic competition in the tumor microenvironment is a driver of cancer Progression [J]. Cell, 2015, 162(6): 1229-1241. [19] Qin C, Yang G, Yang J, et al. Metabolism of pancreatic cancer: paving the way to better anticancer strategies [J]. Mol Cancer, 2020, 19(1): 50. [20] Chini CC, Espindola-Netto JM, Mondal G, et al. SIRT1-activating compounds(STAC)negatively regulate pancreatic cancer cell growth and viability through a SIRT1 lysosomal-dependent pathway [J]. Clin Cancer Res, 2016, 22(10): 2496-2507. [21] Chiarugi A, Dolle C, Felici R, et al. The NAD metabolome - a key determinant of cancer cell biology [J]. Nat Rev Cancer, 2012, 12(11): 741-752. [22] Ju HQ, Zhuang ZN, Li H, et al. Regulation of the nampt-mediated NAD salvage pathway and its therapeutic implications in pancreatic cancer [J]. Cancer Lett, 2016, 379(1): 1-11. [23] Chini CC, Guerrico AM, Nin V, et al. Targeting of NAD metabolism in pancreatic cancer cells: potential novel therapy for pancreatic tumors [J]. Clin Cancer Res, 2014, 20(1): 120-130. [24] Cortellini A, Cannita K, Parisi A, et al. Timedflat infusion of 5fluorouracil with docetaxel and oxaliplatin as firstline treatment of gastroesophageal adenocarcinoma: a single institution experience with the FD/FOx regimen [J]. Oncol Rep, 2018, 40(2): 803-812. [25] Chen W, Zhan P, Wu J, et al. The development of HEPT-type HIV non-nucleoside reverse transcriptase inhibitors and its implications for DABO family [J]. Curr Pharm Des, 2012, 18(27): 4165-4186. [26] Balasubramaniyan V, Bhat K. Targeting pyrimidine metabolism for glioblastoma therapy [J]. Neuro Oncol, 2020, 22(2): 169-170. [27] Shukla SK, Purohit V, Mehla K, et al. MUC1 and HIF-1alpha signaling crosstalk induces anabolic glucose metabolism to impart gemcitabine resistance to pancreatic cancer [J]. Cancer Cell, 2017, 32(3): 71-87. [28] Santana-Codina N, Roeth AA, Zhang Y, et al. Oncogenic KRAS supports pancreatic cancer through regulation of nucleotide synthesis [J]. Nat Commun, 2018, 9(1): 4945. [29] Morita M, Imanaka T. Peroxisomal ABC transporters: structure, function and role in disease [J]. Biochim Biophys Acta, 2012, 1822(9): 1387-1396. [30] Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters [J]. Nat Rev Cancer, 2002, 2(1): 48-58. [31] Adamska A, Falasca M. ATP-binding cassette transporters in progression and clinical outcome of pancreatic cancer: what is the way forward? [J]. World J Gastroenterol, 2018, 24(29): 3222-3238. [32] Mottini C, Tomihara H, Carrella D, et al. Predictive signatures inform the effective repurposing of decitabine to treat KRAS-dependent pancreatic ductal adenocarcinoma[J]. Cancer Res, 2019, 79(21): 5612-5625. |
[1] | 张高瑞,张玉婷,赵雨萱,王方青,于德新. MnFe2O4@CNS纳米探针在胰腺癌诊疗一体化中的价值[J]. 山东大学学报 (医学版), 2021, 59(4): 48-55. |
[2] | 许玉军,柳明,何祥萌,李成利. 1.0T开放型磁共振引导经皮穿刺125I放射性粒子植入治疗晚期胰腺癌[J]. 山东大学学报(医学版), 2017, 55(2): 21-25. |
[3] | 于斐,刘少壮,仲明惟,黄鑫,焦杰,胡三元,于文滨. 基于GC-TOF-MS的结直肠癌代谢组学差异分析[J]. 山东大学学报(医学版), 2016, 54(7): 60-68. |
[4] | 孙旭怡,韩建奎. 18F-FDG PET/CT双时相显像对胰腺良恶性病变鉴别的诊断价值[J]. 山东大学学报(医学版), 2016, 54(4): 68-73. |
[5] | 赵秀芹,邓春颖,李世英,张晋霞,贺永贵,余红,刘斌. 丁苯酞注射液对大鼠局灶性脑缺血再灌注损伤的神经保护作用[J]. 山东大学学报(医学版), 2016, 54(4): 25-31. |
[6] | 刘盈君, 张涛, 王璐, 刘佳, 常学润, 张敬悬, 薛付忠. 基于随机森林的精神分裂症血清代谢组学研究[J]. 山东大学学报(医学版), 2015, 53(2): 92-96. |
[7] | 李红霞, 董蕾, 姜炅, 王新阳. 酪酪肽对胰腺癌Miapaca-2细胞凋亡的影响[J]. 山东大学学报(医学版), 2015, 53(12): 7-11. |
[8] | 徐晖, 聂春兰. 胰腺癌伴血清甲胎蛋白升高1例临床报告[J]. 山东大学学报(医学版), 2014, 52(S1): 120-121. |
[9] | 李梅影1,李际盛1,于学军1,孙丽美1,王艾君1,刘奇迹2,王秀问1. 蟾毒灵对CAPAN-2胰腺癌细胞增殖和细胞周期的影响[J]. 山东大学学报(医学版), 2013, 51(11): 37-41. |
[10] | 梁旭阳,程宝泉,贾俊英,王旭,任洪波. 丙酮酸乙酯对人胰腺癌细胞的抑制作用[J]. 山东大学学报(医学版), 2011, 49(5): 48-53. |
[11] | 蒋海强1,李运伦2,解君2. 基于高效液相色谱-电喷雾-飞行时间质谱联用技术的高血压病血浆代谢组学分析[J]. 山东大学学报(医学版), 2011, 49(10): 150-. |
|