您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (3): 1-12.doi: 10.6040/j.issn.1671-7554.0.2021.1036

• 基础医学 •    

组蛋白去乙酰化酶SIRT1对胰腺癌代谢的调控作用

苑宝文1,王沛2,3,黄蔚1,2   

  • 发布日期:2022-03-09
  • 通讯作者: 黄蔚. E-mail:weihuang@ccmu.edu.cn
  • 基金资助:
    国家自然科学基金(81902960);北京市自然科学基金(7204241);中国医学科学院中央级公益性科研院所基本科研业务费专项资金(2019PT310027)

Regulatory role of histone deacetylase SIRT1 in pancreatic cancer metabolism

YUAN Baowen1, WANG Pei2,3, HUANG Wei1,2   

  1. 1. Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China;
    2. Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Capital Medical University, Beijing 100069, China;
    3. National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
  • Published:2022-03-09

摘要: 目的 通过代谢组学和转录组学技术,探讨组蛋白去乙酰化酶SIRT1对胰腺癌代谢的调控作用及其作用机制。 方法 分析TCGA、GTEx和HPA等数据库中胰腺癌和正常组织的数据,鉴定SIRT1的表达。构建6组SIRT1稳定敲减和对照的胰腺癌PANC-1细胞系,分别应用UHPLC-MS/MS和高通量RNA-seq技术测量代谢物和基因表达水平。探索差异代谢物参与的代谢通路及与药物反应性和耐药性的关系。 结果 TCGA和GTEx数据分析发现,SIRT1在胰腺癌中的表达显著高于正常组织;HPA数据库进一步证实了SIRT1蛋白的高表达。非靶向代谢组检测和高通量转录组测序分别鉴定出59个代谢物和688个基因的差异有统计学意义。差异代谢物主要富集在癌症中胆碱的代谢、嘧啶代谢、ABC转运等代谢通路。有14个显著差异的基因参与了SIRT1调控的代谢通路。这些基因主要富集在嘌呤代谢信号通路,参与ATP结合和小分子代谢等生物过程。CARE分析显示,SIRT1高表达会促使大量抗肿瘤药物出现高反应性,同时也会使部分药物出现耐药性。 结论 SIRT1对胰腺癌代谢有调控作用,为SIRT1参与胰腺癌代谢的调控机制研究和胰腺癌的靶向治疗奠定了基础。

关键词: 沉默信息调节因子2相关酶1, 胰腺癌, 代谢组学, 转录组学, 调控机制

Abstract: Objective To explore the regulatory role and mechanism of silent mating-type information regulation 2 homolog 1(SIRT1)in pancreatic cancer metabolism with metabolomic and transcriptomic techniques. Methods RNA-seq data of pancreatic cancer and normal pancreas tissues from TCGA, GTEx, and HPA were analyzed to identify the expression of SIRT1. A total of 6 pairs of SIRT1 knockdown and control groups of pancreatic cancer PANC-1 cell lines were constructed. The metabolite profiles and gene expression profiles were measured using ultra-high performance liquid chromatography-tandem mass spectrometry(UHPLC-MS/MS)and high-throughput RNA-seq, respectively. Metabolic pathways with significantly different metabolites involved were enriched. The relationship between SIRT1 gene expression and drug responsiveness and drug resistance was analyzed. Results Analysis of TCGA and GTEx data revealed that SIRT1 expression was significantly higher in pancreatic cancer than in normal pancreas tissues; immunohistochemical data from the HPA database further confirmed the higher expression of SIRT1 at the protein level. Untargeted metabolomics and high-throughput RNA-seq identified 59 statistically significantly different metabolites and 688 differentially expressed genes. The differential metabolites were mainly enriched in metabolic pathways such as choline metabolism in cancer, pyrimidine metabolism, and ABC transporters. Fourteen differentially expressed genes were involved in SIRT1-regulated metabolic pathways. These genes were mainly enriched in purine metabolic signaling pathways and involved in biological processes such as ATP binding and small molecule metabolism. CARE online tool showed that higher expression of SIRT1 led to higher responsiveness to many antitumor drugs and resistance to some antitumor drugs. Conclusion Our study reveals that SIRT1 has a regulatory role in pancreatic cancer metabolism, which paves the way for future study on the regulatory mechanism of SIRT1 and targeted therapy for pancreatic cancer.

Key words: Silent mating-type information regulation 2 homolog 1, Pancreatic cancer, Metabolomics, Transcriptomics, Regulatory mechanism

中图分类号: 

  • R735.9
[1] Martinez-Reyes I, Chandel NS. Cancer metabolism: looking forward [J]. Nat Rev Cancer, 2021, 21(10): 669-680.
[2] Hay N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? [J]. Nat Rev Cancer, 2016, 16(10): 635-649.
[3] Xu D, Wang Z, Xia Y, et al. The gluconeogenic enzyme PCK1 phosphorylates INSIG1/2 for lipogenesis [J]. Nature, 2020, 580(7804): 530-535.
[4] Johansson HJ, Socciarelli F, Vacanti NM, et al. Breast cancer quantitative proteome and proteogenomic landscape [J]. Nat Commun, 2019, 10(1): 1600.
[5] Pascual G, Avgustinova A, Mejetta S, et al.Targeting metastasis-initiating cells through the fatty acid receptor CD36 [J]. Nature, 2017, 541(7635): 41-45.
[6] Aird KM,Zhang R. Nucleotide metabolism, oncogene-induced senescence and cancer[J]. Cancer Lett, 2015, 356(2 Pt A): 204-210.
[7] Release Notice-Canadian Cancer Statistics: a 2020 special report on lung cancer [J]. Health Promot Chronic Dis Prev Can, 2020, 40(9): 325.
[8] 张晓璐, 王丽莉, 陈凯明, 等. 组蛋白去乙酰化酶SIRT1经Toll样受体4途径对巨噬细胞凋亡的调控[J]. 山东大学学报(医学版), 2020, 58(12): 8-14. ZHANG Xiaolu, WANG Lili, CHEN Kaiming, et al. Mechanism of histone deacetylase SIRT1 inhibiting macrophages apoptosis via TLR4 signaling pathway [J]. Journal of Shandong University(Health Sciences), 2020, 58(12): 8-14.
[9] Mei Z, Zhang X, Yi J, et al. Sirtuins in metabolism, DNA repair and cancer [J]. J Exp Clin Cancer Res, 2016, 35(1): 182.
[10] Chalkiadaki A,Guarente L. The multifaceted functions of sirtuins in cancer [J]. Nat Rev Cancer, 2015, 15(10): 608-624.
[11] Knight JR, Milner J. SIRT1, metabolism and cancer [J]. Curr Opin Oncol, 2012, 24(1): 68-75.
[12] Yarahmadi S, Abdolvahabi Z, Hesari Z, et al. Inhibition of sirtuin 1 deacetylase by miR-211-5p provides a mechanism for the induction of cell death in breast cancer cells [J]. Gene, 2019, 711: 143939. doi: 10.1016/j.gene.2019.06.029.
[13] Ji K, Sun X, Liu Y, et al. Regulation of apoptosis and radiation sensitization in lung cancer cells via the Sirt1/NF-kappaB/Smac pathway [J]. Cell Physiol Biochem, 2018, 48(1): 304-316.
[14] 郑荣寿, 孙可欣, 张思维, 等. 2015年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2019, 41(1): 19-28. ZHENG Rongshou, SUN Kexin, ZHANG Siwei, et al. Report of cancer epidemiology in China, 2015 [J]. Chinese Journal of Oncology, 2019,41(1): 19-28.
[15] Jin J, Chu Z, Ma P, et al. SIRT1 promotes the proliferation and metastasis of human pancreatic cancer cells [J]. Tumour Biol, 2017, 39(3): 1010428317691180.
[16] Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism [J]. Nat Rev Cancer, 2011, 11(2): 85-95.
[17] Mcdonald OG, Li X, Saunders T, et al. Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis [J]. Nat Genet, 2017, 49(3): 367-376.
[18] Chang CH, Qiu J, Osullivan D, et al. Metabolic competition in the tumor microenvironment is a driver of cancer Progression [J]. Cell, 2015, 162(6): 1229-1241.
[19] Qin C, Yang G, Yang J, et al. Metabolism of pancreatic cancer: paving the way to better anticancer strategies [J]. Mol Cancer, 2020, 19(1): 50.
[20] Chini CC, Espindola-Netto JM, Mondal G, et al. SIRT1-activating compounds(STAC)negatively regulate pancreatic cancer cell growth and viability through a SIRT1 lysosomal-dependent pathway [J]. Clin Cancer Res, 2016, 22(10): 2496-2507.
[21] Chiarugi A, Dolle C, Felici R, et al. The NAD metabolome - a key determinant of cancer cell biology [J]. Nat Rev Cancer, 2012, 12(11): 741-752.
[22] Ju HQ, Zhuang ZN, Li H, et al. Regulation of the nampt-mediated NAD salvage pathway and its therapeutic implications in pancreatic cancer [J]. Cancer Lett, 2016, 379(1): 1-11.
[23] Chini CC, Guerrico AM, Nin V, et al. Targeting of NAD metabolism in pancreatic cancer cells: potential novel therapy for pancreatic tumors [J]. Clin Cancer Res, 2014, 20(1): 120-130.
[24] Cortellini A, Cannita K, Parisi A, et al. Timedflat infusion of 5fluorouracil with docetaxel and oxaliplatin as firstline treatment of gastroesophageal adenocarcinoma: a single institution experience with the FD/FOx regimen [J]. Oncol Rep, 2018, 40(2): 803-812.
[25] Chen W, Zhan P, Wu J, et al. The development of HEPT-type HIV non-nucleoside reverse transcriptase inhibitors and its implications for DABO family [J]. Curr Pharm Des, 2012, 18(27): 4165-4186.
[26] Balasubramaniyan V, Bhat K. Targeting pyrimidine metabolism for glioblastoma therapy [J]. Neuro Oncol, 2020, 22(2): 169-170.
[27] Shukla SK, Purohit V, Mehla K, et al. MUC1 and HIF-1alpha signaling crosstalk induces anabolic glucose metabolism to impart gemcitabine resistance to pancreatic cancer [J]. Cancer Cell, 2017, 32(3): 71-87.
[28] Santana-Codina N, Roeth AA, Zhang Y, et al. Oncogenic KRAS supports pancreatic cancer through regulation of nucleotide synthesis [J]. Nat Commun, 2018, 9(1): 4945.
[29] Morita M, Imanaka T. Peroxisomal ABC transporters: structure, function and role in disease [J]. Biochim Biophys Acta, 2012, 1822(9): 1387-1396.
[30] Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters [J]. Nat Rev Cancer, 2002, 2(1): 48-58.
[31] Adamska A, Falasca M. ATP-binding cassette transporters in progression and clinical outcome of pancreatic cancer: what is the way forward? [J]. World J Gastroenterol, 2018, 24(29): 3222-3238.
[32] Mottini C, Tomihara H, Carrella D, et al. Predictive signatures inform the effective repurposing of decitabine to treat KRAS-dependent pancreatic ductal adenocarcinoma[J]. Cancer Res, 2019, 79(21): 5612-5625.
[1] 张高瑞,张玉婷,赵雨萱,王方青,于德新. MnFe2O4@CNS纳米探针在胰腺癌诊疗一体化中的价值[J]. 山东大学学报 (医学版), 2021, 59(4): 48-55.
[2] 许玉军,柳明,何祥萌,李成利. 1.0T开放型磁共振引导经皮穿刺125I放射性粒子植入治疗晚期胰腺癌[J]. 山东大学学报(医学版), 2017, 55(2): 21-25.
[3] 于斐,刘少壮,仲明惟,黄鑫,焦杰,胡三元,于文滨. 基于GC-TOF-MS的结直肠癌代谢组学差异分析[J]. 山东大学学报(医学版), 2016, 54(7): 60-68.
[4] 孙旭怡,韩建奎. 18F-FDG PET/CT双时相显像对胰腺良恶性病变鉴别的诊断价值[J]. 山东大学学报(医学版), 2016, 54(4): 68-73.
[5] 赵秀芹,邓春颖,李世英,张晋霞,贺永贵,余红,刘斌. 丁苯酞注射液对大鼠局灶性脑缺血再灌注损伤的神经保护作用[J]. 山东大学学报(医学版), 2016, 54(4): 25-31.
[6] 刘盈君, 张涛, 王璐, 刘佳, 常学润, 张敬悬, 薛付忠. 基于随机森林的精神分裂症血清代谢组学研究[J]. 山东大学学报(医学版), 2015, 53(2): 92-96.
[7] 李红霞, 董蕾, 姜炅, 王新阳. 酪酪肽对胰腺癌Miapaca-2细胞凋亡的影响[J]. 山东大学学报(医学版), 2015, 53(12): 7-11.
[8] 徐晖, 聂春兰. 胰腺癌伴血清甲胎蛋白升高1例临床报告[J]. 山东大学学报(医学版), 2014, 52(S1): 120-121.
[9] 李梅影1,李际盛1,于学军1,孙丽美1,王艾君1,刘奇迹2,王秀问1. 蟾毒灵对CAPAN-2胰腺癌细胞增殖和细胞周期的影响[J]. 山东大学学报(医学版), 2013, 51(11): 37-41.
[10] 梁旭阳,程宝泉,贾俊英,王旭,任洪波. 丙酮酸乙酯对人胰腺癌细胞的抑制作用[J]. 山东大学学报(医学版), 2011, 49(5): 48-53.
[11] 蒋海强1,李运伦2,解君2. 基于高效液相色谱-电喷雾-飞行时间质谱联用技术的高血压病血浆代谢组学分析[J]. 山东大学学报(医学版), 2011, 49(10): 150-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!