您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (1): 55-64.doi: 10.6040/j.issn.1671-7554.0.2021.0609

• 临床医学 • 上一篇    下一篇

3种不同的腰椎内固定融合方式的有限元分析

李明波1,黄燕波1,任东成2,刘俊城1,谭成双3,徐继禧4,丁金勇4   

  1. 1.广州中医药大学第一临床医学院, 广东 广州 510405;2.深圳市第三人民医院骨科, 广东 深圳 518112;3.广州市番禺区第二人民医院骨科, 广东 广州 511400;4.广州中医药大学第一附属医院脊柱专科, 广东 广州 510405
  • 发布日期:2022-01-08
  • 通讯作者: 丁金勇. E-mail:Spinegzding@163.com
  • 基金资助:
    广东省科技厅基金(2017ZC0137)

Afinite element analysis of three different fusion methods of lumbar internal fixation

LI Mingbo1, HUANG Yanbo1, REN Dongcheng2, LIU Juncheng1, TAN Chengshuang3, XU Jixi4, DING Jinyong4   

  1. 1. The First Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510405, Guangdong, China;
    2. Department of Orthopedics, The Third Peoples Hospital of Shenzhen, Shenzhen 518112, Guangdong, China;
    3. Department of Orthopedics, The Second Peoples Hospital of Panyu Guangzhou, Guangzhou 511400, Guangdong, China;
    4. Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
  • Published:2022-01-08

摘要: 目的 观察3种不同的腰椎内固定融合方式手术节段和邻近节段的生物力学差异。 方法 构建3种不同的L4~5内固定融合方式模型,包括斜外侧入路椎间融合术(OLIF)模型、单侧微创-经椎间孔腰椎椎间融合术(MIS-TLIF)模型、双侧MIS-TLIF模型。模拟正常人体前屈、后伸、左侧弯、右侧弯、左旋弯和右旋转6种运动状态。对6种不同运动状态下各个模型的邻近节段椎间盘应力峰值、邻近节段椎体最大位移、手术节段融合器应力峰值、内固定应力峰值、L3下终板和L4上终板应力峰值的变化情况进行观察分析。 结果 在3种模型中,OLIF模型在L3~4椎间盘内应力峰值、L3椎体最大位移、内固定应力峰值和L3下终板应力峰值中,均明显小于单侧MIS-TLIF模型和双侧MIS-TLIF模型。在融合器应力峰值比较中,OLIF内固定方式模型融合器应力峰值明显小于单侧MIS-TLIF模型,但在大部分情况下,应力峰值均大于双侧MIS-TLIF模型。而单侧MIS-TLIF内固定方式模型中,融合器应力峰值明显高于双侧MIS-TLIF模型。在内固定应力峰值比较中,OLIF内固定模型生物力学最优,其次是双侧MIS-TLIF,最后是单侧MIS-TLIF。 结论 在3种有限元研究模型中,OLIF模型生物力学效果最优,而且手术损伤相对较小,为临床医师在手术选择上提供参考价值。

关键词: 腰椎内固定融合术, 斜外侧入路椎间融合术, 微创-经椎间孔腰椎椎间融合术, 有限元, 生物力学

Abstract: Objective To observe the biomechanical differences between the operative segments and adjacent segments of three different lumbar internal fixation and fusion methods. Methods Three models of L4-5 internal fixation fusion mode were constructed, including oblique lateral interbody fusion(OLIF)model, unilateral minimally invasive surgery-transforaminal lumbar interbody fusion(MIS-TLIF)model, and bilateral MIS-TLIF model. Six stress states as normal body were simulated, including forward flexion, extension, left flexion, right flexion, left rotation and right rotation. The changes of the peak stress of the intervertebral disc, the maximum displacement of the vertebral body, the peak stress of the cage, the peak stress of the internal fixation, the peak stress of the endplate under L3 and the peak stress of the endplate on L4 in each model under 6 different motion states were observed and analyzed. Results Among the three models, the OLIF model was significantly lower than the other two models in terms of the peak stress in the intervertebral disc at L3-4, the maximum displacement of the vertebral body at L3, the peak stress of internal fixation and the peak stress of the endplate under L3. In comparison of the stress peak of the cage, the stress peak of the OLIF internal fixation model was significantly lower than that of the unilateral MIS-TLIF model, but in most cases, it was greater than that of the bilateral MIS-TLIF model. However, the stress peak of the cage in the unilateral MIS-TLIF internal fixation model was significantly higher than that in the bilateral MIS-TLIF model. In comparison of internal fixed stress peak, the OLIF model had the best biomechanics, followed by the bilateral MIS-TLIF, and the unilateral MIS-TLIF. Conclusion Among the three finite element research models, OLIF model has the best biomechanical effect and relatively small surgical injury, which provides a reference value for clinicians in the choice of surgery.

Key words: Lumbar internal fixation and fusion, Oblique lateral interbody fusion, Minimally invasive surgery-transforaminal lumbar interbody fusion, Finite element, Biomechanics

中图分类号: 

  • R681.5
[1] Reid PC, Morr S, Kaiser MG. State of the union: a review of lumbar fusion indications and techniques for degenerative spine disease [J]. J Neurosurg Spine, 2019, 31(1): 1-14.
[2] Zhao YC, Wang ZW, Zhu XD, et al. Prediction of postoperative trunk imbalance after posterior spinal fusion with pedicle screw fixation for adolescent idiopathic scoliosis [J]. J Pediatr Orthop Part B, 2011, 20(4): 199-208.
[3] Bode KS, Newton PO. Pediatric nonaccidental trauma thoracolumbar fracture-dislocation: posterior spinal fusion with pedicle screw fixation in an 8-month-old boy [J]. Spine(Phila Pa 1976), 2007, 32(14): 388-393.
[4] Li R, Li X, Zhou H, et al. Development and application of oblique lumbar interbody fusion [J]. Orthop Surg, 2020, 12(2): 355-365.
[5] Hoffmann CH, Kandziora F. Minimal-invasive transforaminale lumbale interkorporelle Fusion [J]. Oper Orthopödie Und Traumatol, 2020, 32(3): 180-191.
[6] Momin AA, Steinmetz MP. Evolution of minimally invasive lumbar spine surgery [J]. World Neurosurg, 2020, 140: 622-626. doi:10.1016/j.wneu.2020.05.071.
[7] Mun HY, Ko MJ, Kim YB, et al. Usefulness of oblique lateral interbody fusion at L5-S1 level compared to transforaminal lumbar interbody fusion [J]. J Korean Neurosurg Soc, 2020, 63(6): 723-729. doi:10.3340/jkns.2018.0215.
[8] Foley KT, Lefkowitz MA. Advances in minimally invasive spine surgery [J]. Clin Neurosurg, 2002, 49: 499-517.
[9] Droeghaag R, Hermans SMM, Caelers IJMH, et al. Cost-effectiveness of open transforaminal lumbar interbody fusion(OTLIF)versus minimally invasive transforaminal lumbar interbody fusion(MITLIF): a systematic review and meta-analysis [J]. Spine J, 2021, 21(6): 945-954.
[10] Li J, Shang J, Zhou Y, et al. Finite element analysis of a new pedicle screw-plate system for minimally invasive transforaminal lumbar interbody fusion [J]. PLoS One, 2015, 10(12): e0144637. doi:10.1371/journal.pone.0144637.
[11] Pimenta L, Tohmeh A, Jones D, et al. Rational decision making in a wide scenario of different minimally invasive lumbar interbody fusion approaches and devices [J]. J Spine Surg, 2018, 4(1): 142-155.
[12] Ding WB, Chen YL, Liu H, et al. Comparison of unilateral versus bilateral pedicle screw fixation in lumbar interbody fusion: a meta-analysis [J]. Eur Spine J, 2014, 23(2): 395-403.
[13] 丁金勇, 徐继禧, 谭成双, 等. 不同关节突关节不对称衡量标准的有限元评价[J]. 山东大学学报(医学版), 2020, 58(6): 97-103. DING Jinyong, XU Jixi, TAN Chengshuang, et al. Finite element evaluation of different facet tropism criteria [J]. Journal of Shandong University(Health Sciences), 2020, 58(6): 97-103.
[14] 殷飞, 马荣, 蔡则成, 等. 斜外侧椎间融合联合单侧椎弓根钉棒固定术的三维有限元分析[J]. 中国脊柱脊髓杂志, 2019, 29(8): 732-740. YIN Fei, MA Rong, CAI Zecheng, et al. Three-dimensional finite element analysis of oblique lateral lumbar interbody fusion combined with unilateral pedicle screw fixation [J]. Chinese Journal of Spine and Spinal Cord, 2019, 29(8): 732-740.
[15] 秦一川, 赵斌, 原杰, 等. 三维有限元法分析内固定类型及骨质疏松对斜外侧椎间融合的影响[J]. 中国组织工程研究, 2021, 25(30): 4767-4773. QIN Yichuan, ZHAO Bin, YUAN Jie, et al. Effects of internal fixation types and osteoporosis on oblique lateral interbody fusion: three dimensional finite element analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(30): 4767-4773.
[16] 郝家齐, 王永峰, 原杰, 等. 斜外侧椎间融合术融合器沉降对腰椎生物力学影响的有限元分析[J]. 中国脊柱脊髓杂志, 2021, 31(3): 254-261. HAO Jiaqi, WANG Yongfeng, YUAN Jie, et al. Finite element analysis of lumbar biomechanical effects of cage subsidence in oblique lateral interbody fusion [J]. Chinese Journal of Spine and Spinal Cord, 2021, 31(3): 254-261.
[17] 郭惠智, 梁德, 张顺聪, 等. 斜外侧入路椎间融合术不同内固定方式的有限元分析[J]. 医学研究生学报, 2020, 33(4): 394-398. GUO Huizhi, LIANG De, ZHANG Shuncong, et al. Different internal fixation methods of oblique lateral interbody fusion: a finite element analysis [J]. Journal of Medical Postgraduates, 2020, 33(4): 394-398.
[18] Shim CS, Park SW, Lee SH, et al. Biomechanical evaluation of an interspinous stabilizing device, Locker [J]. Spine(Phila Pa 1976), 2008, 33(22): 820-827.
[19] Fang G, Lin Y, Wu J, et al. Biomechanical comparison of stand-alone and bilateral pedicle screw fixation for oblique lumbar interbody fusion surgery-A finite element analysis [J]. World Neurosurg, 2020, 141: 204-212. doi:10.1016/j.wneu.2020.05.245.
[20] Guo HZ, Tang YC, Guo DQ, et al. Stability evaluation of oblique lumbar interbody fusion constructs with various fixation options: a finite element analysis based on three-dimensional scanning models [J]. World Neurosurg, 2020, 138: 530-538. doi:10.1016/j.wneu.2020.02.180.
[21] Ke W, Wang B, Hua W, et al. Biomechanical evaluation of the sacral slope on the adjacent segment in transforaminal lumbar interbody fusion: a finite element analysis [J]. World Neurosurg, 2020, 133: e84-e88.doi: 10.1016/j.wneu.2019.08.113.
[22] Areias B, Caetano SC, Sousa LC, et al. Numerical simulation of lateral and transforaminal lumbar interbody fusion, two minimally invasive surgical approaches [J]. Comput Methods Biomech Biomed Eng, 2020, 23(8): 408-421.
[23] Xu DS, Walker CT, Godzik J, et al. Minimally invasive anterior, lateral, and oblique lumbar interbody fusion: a literature review [J]. Ann Transl Med, 2018, 6(6): 104.
[24] Silvestre C, Mac-Thiong JM, Hilmi R, et al. Complications and morbidities of mini-open anterior retroperitoneal lumbar interbody fusion: oblique lumbar interbody fusion in 179 patients [J]. Asian Spine J, 2012, 6(2): 89-97.
[25] Li XC, Huang CM, Zhong CF, et al. Minimally invasive procedure reduces adjacent segment degeneration and disease: New benefit-based global meta-analysis [J]. PLoS One, 2017, 12(2): e0171546. doi:10.1371/journal.pone.0171546.
[26] Quillo-Olvera J, Lin GX, Jo HJ, et al. Complications on minimally invasive oblique lumbar interbody fusion at L2-L5 levels: a review of the literature and surgical strategies [J]. Ann Transl Med, 2018, 6(6): 101.
[27] Li HM, Zhang RJ, Shen CL. Radiographic and clinical outcomes of oblique lateral interbody fusion versus minimally invasive transforaminal lumbar interbody fusion for degenerative lumbar disease [J]. World Neurosurg, 2019, 122: 627-638. doi:10.1016/j.wneu.2018.10.115.
[28] Lu T, Lu Y. Comparison of biomechanical performance among posterolateral fusion and transforaminal, extreme, and oblique lumbar interbody fusion: a finite element analysis [J]. World Neurosurg, 2019, 129: 890-899. doi:10.1016/j.wneu.2019.06.074.
[29] Song C, Chang H, Zhang D, et al. Biomechanical evaluation of oblique lumbar interbody fusion with various fixation options: a finite element analysis [J]. Orthop Surg, 2021, 13(2): 517-529.
[30] Zhao C, Wang X, Chen C, et al. Finite element analysis of minimal invasive transforaminal lumbar interbody fusion [J]. Cell Biochem Biophys, 2014, 70(1): 609-613. doi:10.1007/s12013-014-9963-y.
[31] Matur AV, Mejia-Munne JC, Plummer ZJ, et al. The history of anterior and lateral approaches to the lumbar spine [J]. World Neurosurg, 2020, 144: 213-221. doi:10.1016/j.wneu.2020.09.083.
[32] Ahn Y, Youn MS, Heo DH. Endoscopic transforaminal lumbar interbody fusion: a comprehensive review [J]. Expert Rev Med Devices, 2019, 16(5): 373-380.
[33] 肖波. MIS-TLIF采用不同内固定的三维有限元研究[D]. 北京: 中国人民解放军医学院, 2013.
[1] 丁金勇,徐继禧,谭成双,刘俊城,李明波,谢炜星,任东成. 不同关节突关节不对称衡量标准的有限元评价[J]. 山东大学学报 (医学版), 2020, 58(6): 97-103.
[2] 于海群1,张泳1,陶祥臣1,党慧2,李志伟1,王晓君3,牟国营1. 兔眼紫外交联术去上皮与保留上皮的角膜生物力学差异性研究[J]. 山东大学学报(医学版), 2012, 50(4): 80-.
[3] 靳淑梅1,王旭霞1,3,张丽娜1,任旭升1,2,张君1,3. 不同工况下埋伏牙的位移趋势及牙周应力的三维有限元分析[J]. 山东大学学报(医学版), 2010, 48(12): 67-74.
[4] 刘海春 张剑锋 陈允震. 骨质疏松大鼠股骨生物力学特性与骨胶原质量变化的相关研究[J]. 山东大学学报(医学版), 2009, 47(5): 42-45.
[5] . 拔牙创不同愈合期对磨牙远移影响的三维有限元分析[J]. 山东大学学报(医学版), 2009, 47(10): 68-71.
[6] 刘文广,李建民,刘凯红,杨志平,李昕 . 定制肿瘤人工髋关节假体断裂三维有限元分析及套接式翻修假体的初步应用[J]. 山东大学学报(医学版), 2008, 46(4): 430-432.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .
[2] 李洧,李道卫,叶茜,高顺翠,姜淑娟. 经支气管镜针吸活检在纵隔疾病诊断中的价值[J]. 山东大学学报(医学版), 2008, 46(11): 1063 -1065 .
[3] 王旭平,赵玲,冯玉新,商林珊,刘金成,曹伟朋,朱晓音,辛华. 绞股蓝总苷对谷氨酸诱导的胎鼠大脑皮层神经元氧化性损伤保护机制的研究[J]. 山东大学学报(医学版), 2006, 44(6): 564 -567 .
[4] 王学萍,杨洪玲. 洛汀新治疗高血压50例报告[J]. 山东大学学报(医学版), 2007, (2): 213 .
[5] 黄圣运,张东升,张世周,刘桂军,赵跃然,王来成,刘义庆 . 重组表达载体pIRES-CD、pIRES-TK的构建及其在ACC-2细胞中的表达[J]. 山东大学学报(医学版), 2007, 45(2): 117 -123 .
[6] 吕龙飞,李林,李树海,亓磊,鲁铭,程传乐,田辉. 腔镜下细针导管空肠造瘘在微创McKeown食管癌切除术中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 77 -81 .
[7] 邵海港, 王璇, 王青. 山东地区人下颌第一前磨牙根管系统解剖研究[J]. 山东大学学报(医学版), 2014, 52(9): 85 -89 .
[8] 韩明勇,刘奇,唐步坚,邓砚,曹明峰 . IL-18基因转导乳腺癌细胞肿瘤原性的改变及抗瘤作用的研究[J]. 山东大学学报(医学版), 2007, 45(7): 714 -717 .
[9] 刘海春 张剑锋 陈允震. 骨质疏松大鼠股骨生物力学特性与骨胶原质量变化的相关研究[J]. 山东大学学报(医学版), 2009, 47(5): 42 -45 .
[10] 冯复利1,魏树珍2,张永欢3,李莉1,陈融1,李瑞峰1. 胰岛素抵抗大鼠高死亡率与Klotho表达关系的研究[J]. 山东大学学报(医学版), 2010, 48(6): 5 -8 .