山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (7): 10-18.doi: 10.6040/j.issn.1671-7554.0.2021.0335
• • 上一篇
张倩,秦明明,何学佳,蔡秋景,张亚民,李庆苏,朱薇薇
ZHANG Qian, QIN Mingming, HE Xuejia, CAI Qiujing, ZHANG Yamin, LI Qingsu, ZHU Weiwei
摘要: 目的 探究骨化三醇对TGFβ1所诱导的人支气管上皮细胞(BEAS-2B)上皮-间充质转化(EMT)的影响,为哮喘气道重塑的防治提供理论依据。 方法 筛选TGF-β1作用于BEAS-2B,诱导EMT的最佳时间,将细胞分为空白组与24、48、72 h TGF-β1组;筛选TGF-β1作用于BEAS-2B,诱导EMT的最佳浓度,将细胞分为空白组与0.1、1、10、100 ng/mL TGF-β1组;加入骨化三醇预处理BEAS-2B细胞,将细胞分为空白组、TGF-β1组、骨化三醇组、TGF-β1+骨化三醇组。Western blotting检测各组细胞E-Cadherin、N-Cadherin、p-Akt、p-mTOR的蛋白表达量;Transwell法和划痕试验检测各组细胞的迁移能力。 结果 Western blotting结果显示,空白组与24、48、72 h TGF-β1组细胞E-Cadherin蛋白表达量总体差异均有统计学意义(F=53.245, P<0.001),N-Cadherin蛋白表达量的总体差异有统计学意义(F=54.429, P<0.001);与空白组相比,1、10、100 ng/mL TGF-β1组细胞E-Cadherin蛋白表达量总体差异有统计学意义(F=27.368, P<0.001),N-Cadherin蛋白表达量的总体差异有统计学意义(F=14.272, P<0.001),其中10 ng/mL TGF-β1处理细胞48 h,与空白组比较差异最为显著;TGF-β1可激活PI3K/Akt信号通路相关蛋白的表达,以及诱导BEAS-2B间质标志物的表达,TGF-β1主效应差异有统计学意义(P<0.001);加入骨化三醇预处理,可减弱TGF-β1所激活的PI3K/Akt信号通路相关蛋白的表达,亦可减弱TGF-β1所诱导的BEAS-2B间质标志物的表达,骨化三醇主效应差异有统计学意义(P<0.001),TGF-β1与骨化三醇不存在交互作用(P>0.05);Transwell检测结果和划痕试验结果表明,TGF-β1处理组BEAS-2B细胞迁移能力较空白组增强(P<0.001),与TGF-β1组相比,TGF-β1+骨化三醇组BEAS-2B细胞迁移能力减弱(P<0.001),差异均有统计学意义。 结论 骨化三醇可抑制TGF-β1所诱导的BEAS-2B EMT,从而减轻哮喘气道炎症和气道重塑的发生;这一过程可能与骨化三醇抑制TGF-β1所激活的PI3K/Akt/mTOR信号通路相关蛋白有关。
中图分类号:
[1] Liu T, Liu Y, Miller M, et al. Autophagy plays a role in FSTL1-induced epithelial mesenchymal transition and airway remodeling in asthma [J]. Am J Physiol Lung Cell Mol Physiol, 2017, 313(1): 27-40. [2] Liu YD, Sun X, Zhang Y, et al. Protocatechuic acid inhibits TGF-β1-induced proliferation and migration of human airway smooth muscle cells [J]. J Pharmacol Sci, 2019, 139(1): 9-14. [3] Yao L, Wang S, Wei P, et al. Huangqi-Fangfeng protects against allergic airway remodeling through inhibiting epithelial-mesenchymal transition process in mice via regulating epithelial derived TGF-β1 [J]. Phytomedicine, 2019, 64: 153076. doi: 10.1016/j.phymed.2019.153076. [4] 王洪波, 宝瑞, 王燕玲, 等. 喘息婴儿血清25-羟维生素D3水平测定及其临床意义[J].宁夏医科大学学报,2020,42(10):1021-1024. WANG Hongbo, BAO Rui, WANG Yanling, et al. Clinical significance of serum 25-hydroxy vitamin D3 levels in asthmatic infants [J]. Journal of Ningxia Medical University, 2020, 42(10): 1021-1024. [5] Papadopoulou A, Priftis KN. Vitamin D and Vitamin D Receptor in asthma and allergy [J]. Mini Rev Med Chem, 2015, 15(11): 880. doi: 10.2174/138955751511150702124617. [6] Antholine WE, Myers CR. Concentration of Fe(3+)-Triapine in BEAS-2B Cells [J]. Int J Mol Sci, 2019, 20(12): 3062. doi: 10.3390/ijms20123062. [7] Lv X, Zhou X, Yan J, et al. Propofol inhibits LPS-induced apoptosis in lung epithelial cell line, BEAS-2B [J]. Biomed Pharmacother, 2017, 87: 180-187. doi: 10.1016/j.biopha.2016.12.074 [8] Fischer KD, Agrawal DK. Vitamin D regulating TGF-β induced epithelial-mesenchymal transition [J]. Respir Res, 2014, 15(1): 146. doi: 10.1186/s12931-014-0146-6. [9] Ricca C, Aillon A, Viano M, et al. Vitamin D inhibits the epithelial-mesenchymal transition by a negative feedback regulation of TGF-β activity [J]. J Steroid Biochem Mol Biol, 2019, 187: 97-105. doi: 10.1016/j.jsbmb.2018.11.006. [10] Zheng S, Yang J, Hu X, et al. Vitamin D attenuates lung injury via stimulating epithelial repair, reducing epithelial cell apoptosis and inhibits TGF-β induced epithelial to mesenchymal transition [J]. Biochem Pharmacol, 2020, 177: 113955. doi: 10.1016/j.bcp.2020.113955. [11] Zhao L, Liu CC, Shi XL, et al. Inhibitory effect of KyoT2 overexpression on proliferation and migration of airway smooth muscle cells in mice with asthma [J]. Zhongguo Dang Dai Er Ke Za Zhi, 2016, 18(9): 885-890. [12] Fan M, Xu J, Xiao Q, et al. Long non-coding RNA TCF7 contributes to the growth and migration of airway smooth muscle cells in asthma through targeting TIMMDC1/Akt axis [J]. Biochem Biophys Res Commun, 2019, 508(3): 749-755. [13] Huang N, Liu K, Liu J, et al. Interleukin-37 alleviates airway inflammation and remodeling in asthma via inhibiting the activation of NF-κB and STAT3 signalings [J]. Int Immunopharmacol, 2018, 55: 198-204. doi: 10.1016/j.intimp.2017.12.010. [14] Liu F, Shang YX. Sirtuin 6 attenuates epithelial-mesenchymal transition by suppressing the TGF-β1/Smad3 pathway and c-Jun in asthma models [J]. Int Immunopharmacol, 2020, 82: 106333. doi: 10.1016/j.intimp.2020.106333. [15] Fehrenbach H, Wagner C, Wegmann M. Airway remodeling in asthma: what really matters [J]. Cell Tissue Res, 2017, 367(3): 551-569. [16] King GG, Noble PB. Airway remodelling in asthma: Its not going away [J]. Respirology, 2016, 21(2): 203-204. [17] Vu T, Datta PK. Regulation of EMT in Colorectal Cancer: A culprit in metastasis [J]. Cancers(Basel), 2017, 9(12): 171. doi: 10.3390/cancers9120171. [18] Yeh HW, Hsu EC, Lee SS, et al. PSPC1 mediates TGF-β1 autocrine signalling and Smad2/3 target switching to promote EMT, stemness and metastasis [J]. Nat Cell Biol, 2018, 20(4): 479-491. [19] 蔡秋景, 张倩, 何学佳, 等. 气道平滑肌细胞通过TGF-β1/Smad3信号通路调节IL-33的表达参与哮喘[J]. 山东大学学报(医学版), 2020, 58(4): 78-83. CAI Qiujing, ZHANG Qian, HE Xuejia, et al. Expression of IL-33 in airway smooth muscle cells regulates the TGF-β1/Smad3 signaling pathway and is involved in asthma [J]. Journal of Shandong University(Medical Science Edition), 2020, 58(4): 78-83. [20] Xu W, Yang Z, Lu N. A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition [J]. Cell Adh Migr, 2015, 9(4): 317-324. [21] Thomas PE, Peters-Golden M, White ES,et al. PGE(2)inhibition of TGF-beta1-induced myofibroblast differentiation is Smad-independent but involves cell shape and adhesion-dependent signaling [J]. Am J Physiol Lung Cell Mol Physiol, 2007, 293(2): 417-428. [22] Tan ZX, Chen YH, Xu S, et al. Calcitriol inhibits bleomycin-induced early pulmonary inflammatory response and epithelial-mesenchymal transition in mice [J]. Toxicol Lett, 2016, 240(1): 161-171. [23] Xu S, Zhang ZH, Fu L, et al. Calcitriol inhibits migration and invasion of renal cell carcinoma cells by suppressing Smad2/3-, STAT3- and β-catenin-mediated epithelial-mesenchymal transition [J]. Cancer Sci, 2020, 111(1): 59-71. [24] 闫玉晓,李宇宁.激素抵抗型哮喘发病机制和维生素D对其部分机制的影响[J].中国当代儿科杂志,2019,21(7):724-729。 YAN Yuxiao, LI Yuning. Pathogenesis of steroid-resistant asthma and the influence of vitamin D [J]. Zhongguo Dang Dai Er Ke Za Zhi, 2019, 21(7): 724-729. [25] Kerley CP, Elnazir B, Faul J, et al. Vitamin D as an adjunctive therapy in asthma. Part 2: A review of human studies [J]. Pulm Pharmacol Ther, 2015, 32: 7592. doi: 10.1016/j.pupt.2015.02.010. |
[1] | 刘晓菲,梁瀛,张丛溪,王娟,潘云,徐嘉蔚,常春,董亮. 92例哮喘患者血清瘦素与诱导痰嗜酸性粒细胞的关系[J]. 山东大学学报 (医学版), 2020, 1(9): 27-33. |
[2] | 李岩,牛瑞,王超超. 122例哮喘患者舒张试验结果分析[J]. 山东大学学报 (医学版), 2020, 58(11): 81-84. |
[3] | 李雪,李栋,时庆,周盼盼,鞠秀丽. Helios在儿童急性淋巴细胞性白血病调节性T细胞中的表达及功能[J]. 山东大学学报(医学版), 2017, 55(4): 76-81. |
[4] | 刘清发,王超,孙启晶,宫晓丹,张才擎. IL-25通过nuocyte细胞诱导哮喘小鼠气道重塑[J]. 山东大学学报(医学版), 2016, 54(8): 28-33. |
[5] | 刘琳,刘春红,王得翔,吴金香,赵继萍,刘甜,张元元,王俊飞,柳亚慧,曹柳兆,董亮. 应用呼出气一氧化氮联合脉冲振荡肺功能评估哮喘患者的小气道功能[J]. 山东大学学报(医学版), 2016, 54(8): 78-83. |
[6] | 席福立,张梅. MicroRNA-34a在心肌纤维化过程中对SH2B3的表达调控[J]. 山东大学学报(医学版), 2016, 54(2): 6-10. |
[7] | 吴宏图, 丁娴, 张磊, 曹兴丽, 王峥艳, 单春明, 刘平. 儿童咳嗽变异性哮喘FeNO、hs-CRP及 IgE水平变化及意义[J]. 山东大学学报(医学版), 2014, 52(S2): 82-83. |
[8] | 黄艳, 旷昕, 熊花, 刘鑫, 罗晓青, 刘斌. 柴朴汤调控VEGF、TGF-β1的表达对哮喘大鼠气道重塑的影响[J]. 山东大学学报(医学版), 2014, 52(S1): 14-17. |
[9] | 田艳, 侯善荣, 刘建立, 孙兴盛, 黄丽红. 不同剂量阿托伐他汀对扩张性心肌病大鼠心肌TGF-β1及心脏结构的影响[J]. 山东大学学报(医学版), 2014, 52(9): 6-10. |
[10] | 李燕, 谢敏, 史小玲, 王晓燕, 唐利, 钟森, 陈庄. HSP70/CD80 DNA疫苗通过调节Th1/Th2/Treg/Th17细胞对小鼠急性哮喘的抑制作用[J]. 山东大学学报(医学版), 2014, 52(10): 20-24. |
[11] | 张倩1,2,钱粉红3,周林福4,韦国桢1,柏建岭5,殷凯生4,施毅2. TLR7/8基因多态性与江苏省汉族人群哮喘发病风险及严重度的关系[J]. 山东大学学报(医学版), 2013, 51(2): 93-98. |
[12] | 周佳丽1,2,张岩1,王东明2,张艳2. Toll样受体4在小儿哮喘致病机制中的作用[J]. 山东大学学报(医学版), 2013, 51(06): 106-109. |
[13] | 吴平. 哌拉西林舒巴坦钠(4∶1)过敏致哮喘患儿心脏骤停1例[J]. 山东大学学报(医学版), 2013, 51(06): 110-110. |
[14] | 王得翔1,季秀丽1,2,马德东1,张玉可1,何宝龙1,王文巧1,肖伟1. 济南地区支气管哮喘患者经济负担及其影响因素分析[J]. 山东大学学报(医学版), 2012, 50(5): 124-128. |
[15] | 缪玉娥,王珏,王潍博. 胃癌及其癌旁黏膜中维生素D受体的表达[J]. 山东大学学报(医学版), 2012, 50(2): 74-. |
|