您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2019, Vol. 57 ›› Issue (3): 42-48.doi: 10.6040/j.issn.1671-7554.0.2018.708

• 临床医学 • 上一篇    

骨髓增生异常综合征患者基因突变对地西他滨临床疗效的影响

窦春慧1,邵建华1,董学斌1,张凌2,陈萍1,赵红玉1,顾琳萍1,孙琳1,解杰1,王敏1,王娟1,李娜1,李凡1,李大启1   

  1. 1.山东大学附属济南市中心医院血液科, 山东 济南250013;2.潍坊市益都中心医院消化科, 山东 青州262500
  • 发布日期:2022-09-27
  • 通讯作者: 李大启. E-mail:ldq9194@126.com
  • 基金资助:
    济南市科技局企业自主创新计划(200905035-1)

Effect of gene mutation on the clinical efficacy of decitabine for patients with myelodysplastic syndrome

DOU Chunhui1, SHAO Jianhua1, DONG Xuebin1, ZHANG Ling2, CHEN Ping1, ZHAO Hongyu1, GU Linping1, SUN Lin1, XIE Jie1, WANG Min1, WANG Juan1, LI Na1, LI Fan1, LI Daqi1   

  1. 1. Department of Hematology, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013, Shandong, China;
    2. Department of Gastroenterology, Yidu Central Hospital of Weifang, Qingzhou 262500, Shandong China
  • Published:2022-09-27

摘要: 目的 探讨基因突变及相关临床指标对接受地西他滨治疗的骨髓增生异常综合征(MDS)患者预后的影响。 方法 收集38例初诊MDS患者临床数据及血液、骨髓液等临床标本,基因序列及染色体核型分析结果,应用单因素及多因素统计分析研究MDS患者的反应率及生存时间,回顾性分析临床指标及基因状况对接受地西他滨治疗的MDS患者预后的影响。 结果 38例初诊患者,92%存在至少1个突变基因,染色体异常检出率为52.6%。患者接受地西他滨单药治疗或地西他滨联合化疗,中位疗程数为4,患者总反应率为63%(24/38)。多因素分析发现,TET2基因突变患者化疗后反应率较未发生突变患者的反应率高(82% vs 48%),差异有统计学意义(P=0.043,P=0.034)。随访患者最终死亡12例(32%),所有患者的中位生存时间为27.6个月。多因素生存分析发现,38例MDS患者染色体核型分型好、中等、差的中位生存时间分别为31.4、17.6、10.4个月,IPSS风险分层低危、中危-1、中危-2、高危的中位生存时间分别为31.4、27.6、23.4、11.4个月,血红蛋白≥100 g/L、<100 g/L的中位生存时间分别为31.4、19.4个月,血细胞减少系数0~1、≥2的中位生存时间分别为31.4、17.6个月,差异均有统计学意义(P<0.05)。TP53基因有无突变患者的中位生存时间分别为16.4、31.4个月,但差异无统计学意义(P=0.097)结论 TET2基因突变的患者化疗反应率较未突变患者高,TET2基因突变状态对预测反应率具有重要意义。

关键词: 骨髓增生异常综合征, 地西他滨, 基因突变, 预后

Abstract: Objective To investigate the effect of gene mutation and related clinical indicators on the prognosis of patients with myelodysplastic syndromes(MDS). Methods Clinical data of 38 MDS patients were collected. Clinical specimens such as blood and genetic sequencing and karyotype analysis of bone marrow fluid were also collected. The response rate and survival rate of MDS patients treated with decitabine were statistically analyzed by single factor and multiple factors using SPSS software. The effects of clinical features and gene mutation on the prognosis of MDS patients treated with decitabine were retrospectively analyzed. Results Among the 38 cases, 92% of patients had at 山 东 大 学 学 报 (医 学 版)57卷3期 -窦春慧,等.骨髓增生异常综合征患者基因突变对地西他滨临床疗效的影响 \=-least one mutant gene and the detection rate of chromosome abnormality was 52.6%. Patients accepted monotherapy of decitabine or combined treatment with decitabine. The median number of treatment cycles was 4, and the total response rate was 63%(24/38). Fourteen patients were invalid. Multifactor analysis found that the response rate of patients with TET2 gene mutation was higher than those without mutation(82% vs 48%, Ps=0.043, Pm=0.034). The follow-up patients ended up with 12 deaths(32%). Median survival time of all patients was 27.6 months. Multifactor survival analysis found that chromosome karyotypes were good, intermediate and poor in 38 MDS patients and their survival time were 31.4, 17.6, 10.4 months, respectively. The risk stratification of IPSS were low risk, intermediate-1, intermediate-2, high risk and median survival time were 31.4, 27.6, 23.4, 11.4 months, respectively. Median survival time for patients with hemoglobin ≥100 g/L and <100 g/L were respective 31.4 and 19.4 months. Median survival time for patients with the number of cytopenias with 0-1 and greater than 2 were respective 31.4 and 17.6 months. The indicators mentioned above were statistically different(all P<0.05). Median survival time of patients with and without TP53 mutation were 16.4 and 31.4 months without statistical difference(P=0.097). Conclusion Patients with TET2 gene mutation have higher response rate to chemotherapy than those without mutation.

Key words: Myelodysplastic syndromes, Decitabine, Gene mutation, Prognosis

中图分类号: 

  • R551.3
[1] Nimer SD. Myelodysplastic syndromes[J]. Blood, 2008, 111(10): 4841-4851.
[2] Nolte F, Hofmann WK. Molecular mechanisms involved in the progression of myelodysplastic syndrome[J]. Future Oncol, 2010, 6(3): 445-455.
[3] Figueroa ME, Skrabanek L, Li YS, et al. MDS and secondary AML display unique patterns and abundance of aberrant DNA methylation[J]. Blood, 2009, 114(16): 3448-3458.
[4] Kantarjian H, Issa JP, Rosenfeld CS, et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study[J]. Cancer, 2006, 106(8): 1794-1803.
[5] Fenaux P, Mufti GJ, Hellstrom-Lindberg E, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study[J]. Lancet Oncol, 2009, 10(3): 223-232.
[6] 宋慧慧, 陈宝安, 刘苒, 等. 地西他滨3 d方案治疗骨髓增生异常综合征疗效讨论附两例病例报道[J]. 东南大学学报(医学版), 2011, 30(3): 474-477. SONG Huihui, CHEN Baoan, LIU Ran, et al. Discussion of decitabine 3-day program treatment on myelodysplastic syndrome-report of 2 cases[J]. Journal of Southeast University(Medical Science Edition), 2011, 30(3): 474-477.
[7] 高冲,陈宝安,刘苒,等.地西他滨治疗骨髓增生异常综合征一例报告[J]. 现代医学, 2010, 38(2): 189-190. GAO Chong, CHEN Baoan, LIU Ran, et al. A case report of decitabine treatment of myelodysplastic syndrome[J]. Modern Medical Journal, 2010, 38(2): 189-190.
[8] Fenaux P, Ades L. Review of azacitidine trials in Intermediate-2-and High-risk myelodysplastic syndromes[J]. Leuk Res, 2009, 33(Suppl 2): S7-11.
[9] Vardiman JW, Thiele J, Arber DA, et al. The 2008 revision of the World Health Organization(WHO)classification of myeloid neoplasms and acute leukemia: rationale and important changes[J]. Blood, 2009, 114(5): 937-951.
[10] Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia [J]. Blood, 2016, 127(20): 2391-2405.
[11] Cheson BD, Greenberg PL, Bennett JM, et al. Clinical application and proposal for modification of the International Working Group(IWG)response criteria in myelodysplasia[J]. Blood, 2006, 108(2): 419-425.
[12] Greenberg P, Cox C, LeBeau MM, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes[J]. Blood, 1997, 89(6): 2079-2088.
[13] Wu H, Zhang Y. Reversing DNA methylation: mechanisms, genomics, and biological functions[J]. Cell, 2014, 156(1/2): 45-68.
[14] Traina F, Visconte V, Elson P, et al. Impact of molecular mutations on treatment response to DNMT inhibitors in myelodysplasia and related neoplasms[J]. Leukemia, 2014, 28(1): 78-87.
[15] Matsuda A, Germing U, Jinnai I, et al. Difference in clinical features between Japanese and German patients with refractory anemia in myelodysplastic syndromes[J]. Blood, 2005, 106(8): 2633-2640.
[16] Adès L, Itzykson R, Fenaux P. Myelodysplastic syndromes[J]. The Lancet, 2014, 383(9936): 2239-2252.
[17] Itzykson R, Kosmider O, Cluzeau T, et al. Impact of TET2 mutations on response rate to azacitidine in myelodysplastic syndromes and low blast count acute myeloid leukemias[J]. Leukemia, 2011, 25(7): 1147-1152.
[18] Braun T, Itzykson R, Renneville A, et al. Molecular predictors of response to decitabine in advanced chronic myelomonocytic leukemia: a phase 2 trial[J]. Blood, 2011, 118(14): 3824-3831.
[19] Bejar R, Lord A, Stevenson K, et al. TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients[J]. Blood, 2014, 124(17): 2705-2712.
[20] Welch JS, Petti AA, Miller CA, et al. TP53 and decitabine in acute myeloid leukemia and myelodysplastic syndromes [J]. N Engl J Med, 2016, 375(21): 2023-2036.
[21] Zhao YS, Guo J, Xu F, et al. Predict response to decitabine in patients with myelodysplastic syndrome and related neoplasms [J]. Zhonghua Xue Ye Xue Za Zhi, 2017, 38(2): 124-128.
[22] Chang CK, Zhao YS, Xu F, et al. TP53 mutations predict decitabine-induced complete responses in patients with myelodysplastic syndromes[J]. Br J Haematol, 2017, 176(4): 600-608.
[23] Im AP, Sehgal AR, Carroll MP, et al. DNMT3A and IDH mutations in acute myeloid leukemia and other myeloid malignancies: associations with prognosis and potential treatment strategies[J]. Leukemia, 2014, 28(9): 1774-1783.
[24] Thol F, Friesen I, Damm F, et al. Prognostic significance of ASXL1 mutations in patients with myelodysplastic syndromes[J]. J Clin Oncol, 2011, 29(18): 2499-2506.
[25] Gelsi-Boyer V, Trouplin V, Adélaïde J, et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia[J]. Br J Haematol, 2009, 145(6): 788-800.
[26] Bejar R, Stevenson K, Abdel-Wahab O, et al. Clinical effect of point mutations in myelodysplastic syndromes[J]. N Engl J Med, 2011, 364(26): 2496-2506.
[27] Itzykson R, Thépot S, Quesnel B, et al. Prognostic factors for response and overall survival in 282 patients with higher-risk myelodysplastic syndromes treated with azacitidine[J]. Blood, 2011, 117(2): 403-411.
[28] Zeidan AM, Lee JW, Prebet T, et al. Comparison of the prognostic utility of the revised International Prognostic Scoring System and the French Prognostic Scoring System in azacitidine-treated patients with myelodysplastic syndromes[J]. Br J Haematol, 2014, 166(3): 352-359.
[29] Breccia M, Loglisci G, Cannella L, et al. Application of French prognostic score to patients with International Prognostic Scoring System intermediate-2 or high risk myelodysplastic syndromes treated with 5-azacitidine is able to predict overall survival and rate of response[J]. Leuk Lymphoma, 2012, 53(5): 985-986.
[30] Ye L, Ren YL, Xie LL, et al. A preliminary study on the outcome of lower-risk myelodysplastic syndrome by low-dose decitabine[J]. Zhonghua Xue Ye Xue Za Zhi, 2017, 38(4): 307-312.
[31] Hong JY, Seo JY, Kim SH, et al. Mutations in the spliceosomal machinery genes SRSF2, U2AF1, and ZRSR2 and response to decitabine in myelodysplastic syndrome[J]. Anticancer Res, 2015, 35(5): 3081-3089.
[1] 郑苏,陈述花,李华,邓劼,陈春红,王晓慧,冯卫星,韩萧迪,张雨佳,李娜,李莫,方方. 脑电变化和BASED评分与54例婴儿痉挛症促肾上腺皮质激素疗效的相关性[J]. 山东大学学报 (医学版), 2022, 60(9): 91-96.
[2] 王丽慧,高敏,孔北华. 子宫血管肉瘤2例报告并文献复习[J]. 山东大学学报 (医学版), 2022, 60(9): 108-112.
[3] 高中霞,张铭,樊明德,谭晨阳,王梦迪,王超,樊跃飞,丁守銮,王成伟. 伽玛刀治疗81例肺癌脑转移瘤的疗效及预后因素[J]. 山东大学学报 (医学版), 2022, 60(8): 44-49.
[4] 贺士卿,李皖皖,董书晴,牟婧怡,刘宇莹,魏思雨,刘钊,张家新. 基于数据库构建乳腺癌焦亡相关基因的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(8): 34-43.
[5] 张玉凤,徐敏,邢秀丽,逄曙光,户克庆. 689例非ST段抬高型心肌梗死患者的临床流行病学特征[J]. 山东大学学报 (医学版), 2022, 60(7): 118-122.
[6] 李琳琳,王凯. 基于生物信息学预测肝细胞癌预后基因[J]. 山东大学学报 (医学版), 2022, 60(5): 50-58.
[7] 郑昊天,王光辉,赵小刚,王亚东,曾榆凯,杜贾军. 基于数据库LKB1突变肺腺癌DNA异常甲基化位点构建的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(3): 51-58.
[8] 薛美娟,石艳,邵琳琳,王琳,张昀,张阿敏. 遗传性血栓性血小板减少性紫癜1例并文献复习[J]. 山东大学学报 (医学版), 2022, 60(3): 121-124.
[9] 潘鹏飞,徐立升,纪坤乾,王得翔,李玉. 以呼吸衰竭起病的线粒体肌病1例及文献回顾[J]. 山东大学学报 (医学版), 2022, 60(2): 54-59.
[10] 亓梦雨,周敏然,孙洺山,李世洁,陈春燕. T大颗粒淋巴细胞白血病合并原发性骨髓纤维化1例[J]. 山东大学学报 (医学版), 2022, 60(2): 118-120.
[11] 史本康,陈守臻,曲思凤,王勇,刘磊. 临床常见快速进展前列腺癌临床特点及研究进展[J]. 山东大学学报 (医学版), 2021, 59(9): 110-116.
[12] 陈立晓,英信江,陈歆维,王菲,孙臻峰,董频. 下咽鳞癌蛋白质谱鉴定及预后靶分子筛选[J]. 山东大学学报 (医学版), 2021, 59(9): 140-147.
[13] 褚晏,刘端瑞,朱文帅,樊荣,马晓丽,汪运山,郏雁飞. DNA甲基化转移酶在胃癌中的表达及其临床意义[J]. 山东大学学报 (医学版), 2021, 59(7): 1-9.
[14] 陈丽宇,肖娟,吕仙忠,段宝敏,洪凡真. 影响孕产妇下肢深静脉血栓预后的危险因素分析[J]. 山东大学学报 (医学版), 2021, 59(7): 38-42.
[15] 田瑶天,王宝,李叶琴,王滕,田力文,韩波,王翠艳. 基于可解释性心脏磁共振参数的机器学习模型预测儿童心肌炎的预后[J]. 山东大学学报 (医学版), 2021, 59(7): 43-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!