山东大学学报 (医学版) ›› 2018, Vol. 56 ›› Issue (10): 24-30.doi: 10.6040/j.issn.1671-7554.0.2018.1011
• • 上一篇
高春芳,黄晨军
GAO Chunfang, HUANG Chenjun
摘要: 肝内胆管细胞癌(ICC)是仅次于肝细胞癌的第二大肝脏恶性肿瘤,且发病率呈逐年上升趋势。ICC早期症状较隐匿、进展快、恶性程度高、预后较差。早诊断、早治疗可有效改善ICC患者的生存水平。通过检测ICC患者组织及外周血清肿瘤标志物,深入开展ICC发生、发展、复发与转移相关研究,对于阐明ICC发病机制以及研究新的ICC早期诊断与治疗方法,具有重要的研究意义和应用价值。
中图分类号:
[1] Esnaola NF, Meyer JE, Karachristos A, et al. Evaluation and management of intrahepatic and extrahepatic cholangiocarcinoma[J]. Cancer, 2016, 122(9): 1349-1369. [2] Banales JM, Cardinale V, Carpino G, et al. Expert consensus document: Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma(ENS- CCA)[J]. Nat Rev Gastroenterol Hepatol, 2016, 13(5): 261-280. [3] Lafaro KJ, Cosgrove D, Geschwind JF, et al. Multidisciplinary care of patients with intra- hepatic cholangiocarcinoma: updates in management[J]. Gastroenterol Res Pract, 2015, 2015: 860861. doi: 10.1155/2015/860861. [4] Zhu AX, Borger DR, Kim Y, et al. Genomic profiling of intrahepatic cholangiocarcinoma: refining prognosis and identifying therapeutic targets[J]. Ann Surg Oncol, 2014, 21(12): 3827-3834. [5] 黄禾, 刘晓蓉, 尤启冬. 异柠檬酸脱氢酶及其突变体抑制剂在急性髓系白血病治疗领域的研究进展[J].药学进展, 2018, 42(3): 207-213. HUANG He, LIU Xiaorong, YOU Qidong.Advances in isocitrate dehydrogenase and the inhibitors of its mutants for acute myeloid leukemia[J]. Progress in Pharmaceutical Sciences, 2018, 42(3): 207-213. [6] Grassian AR, Pagliarini R, Chiang DY, et al. Mutations of isocitrate dehydrogenase 1 and 2 in intrahepatic cholangiocarcinoma[J]. Curr Opin Gastroenterol, 2014, 30(3): 295-302. [7] Wang P, Dong Q, Zhang C, et al. Mutations in isocitrate dehydrogenase 1 and 2 occur frequently in intrahepatic cholangiocarcinomas and share hypermethylation targets with glioblastomas[J]. Oncogene, 2013, 32(25): 3091-3100. [8] Jiao Y, Pawlik TM, Anders RA, et al. Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas[J]. Nat Genet, 2013, 45(12): 1470-1473. [9] Grassian AR, Pagliarini R, Chiang D, et al. Mutations of isocitrate dehydrogenase 1 and 2 in intrahepatic cholangiocarcinoma[J]. Curr Opin Gastroenterol, 2014, 30(3): 295-302. [10] Ostrem JM, Peters U, Sos ML, et al. K-Ras(G12C)inhibitors allosterically control GTP affinity and effector interactions[J]. Nature, 2013, 503(7477): 548-551. [11] Krasinskas AM, Moser A, Saka B, et al. KRAS mutant allele-specific imbalance is associated with worse prognosis in pancreatic cancer and progression to undifferentiated carcinoma of the pancreas[J]. Mod Pathol, 2013, 26(10): 1346-1354. [12] Xu RF, Sun JP, Zhang SR, et al. KRAS and PIK3CA but not BRAF genes are frequently mutated in Chinese cholangiocarcinoma patients[J]. Biomed Pharmacother, 2011, 65(1): 22-26. [13] Tannapfel A, Benicke M, Katalinic A, et al. Frequency of p16(INK4A)alterations and K-ras mutations in intrahepatic cholangiocarcinoma of the liver[J]. Gut, 2000, 47(5): 721-727. [14] Kennedy L, Baker K, Hodges K, et al. Dysregu- lation of vitamin D3 synthesis leads to enhanced cholangiocarcinoma growth[J]. Dig Liver Dis, 2013, 45(4): 316-322. [15] Zheng T, Hong X, Wang J, et al. Gankyrin promotes tumor growth and metastasis through activation of IL-6/STAT3 signaling in human cholangiocarcinoma[J]. Hepatology, 2014, 59(3): 935-946. [16] Morris SM, Baek JY, Koszarek A, et al. Transforming growth factor-beta signaling promotes hepatocarcinogenesis induced by p53 loss[J]. Hepatology, 2012, 55(1): 121-131. [17] O'Dell MR, Huang JL, Whitney-Miller CL, et al. Kras(G12D)and p53 mutation cause primary intrahepatic cholangiocarcinoma[J]. Cancer Res, 2012, 72(6): 1557-1567. [18] Luo G, Li B, Duan C, et al. c-Myc promotes cholangiocarcinoma cells to overcome contact inhibition via the mTOR pathway[J]. Oncol Rep, 2017, 38(4): 2498-2506. [19] Songserm N, Promthet S, Sithithaworn P, et al. Risk factors for cholangiocarcinoma in high-risk area of Thailand: role of lifestyle, diet and methylenetetrahydrofolate reductase polymor- phisms[J]. Cancer Epidemiol, 2012, 36(2): e89-94. [20] Khoontawad J, Pairojkul C, Rucksaken R, et al. Differential protein expression marks the transition from infection with to cholangiocar- cinoma[J]. Mol Cell Proteomics, 2017, 16(5): 911-923. [21] Singh S, Tang SJ, Sreenarasimhaiah J, et al. The clinical utility and limitations of serum carbohydrate antigen(CA19-9)as a diagnostic tool for pancreatic cancer and cholangiocarcinoma[J]. Dig Dis Sci, 2011, 56(8): 2491-2496. [22] Viterbo D, Gausman V, Gonda T, et al. Diagnostic and therapeutic biomarkers in pancreaticobiliary malignancy[J]. World J Gastrointest Endosc, 2016, 8(3): 128-142. [23] Razumilava N, Gores GJ. Cholangiocarcinoma[J]. Lancet, 2014, 383(9935): 2168-2179. [24] Chalasani N, Baluyut A, Ismail A, et al. Cholangiocarcinoma in patients with primary sclerosing cholangitis: a multicenter case-control study[J]. Hepatology, 2000, 31(1): 7-11. [25] Shen WF, Zhong W, Xu F, et al. Clinicopatho-logical and prognosticanalysis of 429 patients with intrahepatic cholangiocarcinoma[J]. World J Gastroenterol, 2009, 15(47): 5976-5982. [26] 徐靖, 易炜, 万百顺. MMP-2和MMP-9在肝内胆管细胞癌组织中的表达及意义[J]. 中国普通外科杂志, 2015, 24(8): 1107-1111. XU Jing, YI Wei, WAN Baishun, etal.MMP-2 and MMP-9 expressions in intrahepatic cholangiocarcinoma tissue and the significance[J] Chinese Journal of General Surgery, 2015, 24(8): 1107-1111. [27] Hirashita T, Iwashita Y, Ohta M, et al. Expression of matrix metalloproteinase-7 is an unfavorable prognostic factor in intrahepatic cholangiocarcinoma[J]. J Gastrointest Surg, 2012, 16(4): 842-848. [28] Sun Q, Zhao CZ, Xia LZ, et al. High expression of matrix metalloproteinase-9 indicates poor prognosis in human hilar cholangiocarci- noma[J]. Int J Clin Exp Pathol, 2014, 7(9): 6157-6164. [29] Tongtawee T, Kaewpitoon SJ, Loyd R, et al. High expression of matrix metalloproteinase-11 indicates poor prognosis in human cholangiocar-cinoma[J]. Asian Pac J Cancer Prev, 2015, 16(9): 3697-3701. [30] Jo Chae K, Rha SY, Oh BK, et al. Expression of matrix metalloproteinase-2 and -9 and tissueinhibitor of metalloproteinase-1 and -2 in intraductal and nonintraductalgrowthtype of cholangiocarcinoma[J]. Am J Gastroenterol, 2004, 99(1): 68-75. [31] Zhang FH, Ren HY, Shen JX, et al. Magnolol suppresses the proliferation and invasion of cholangiocarcinoma cells via inhibiting the NF-κB signaling pathway[J]. Biomed Pharmacother, 2017, 94: 474-480. doi:10.1016/j.biopha.2017.07.085. [32] 张欣, 史若愚, 樊嘉. Dickkopf-1在肝内胆管细胞癌组织及血清中的表达及其临床意义[J].中国临床医学, 2012, 19(2): 102-104. [33] Shen QJ, Fan J, Yang XR, et al. Serum DKK1 as a protein biomarker for the diagnosis of hepatocellular carcinoma: a large-scale, multice-ntre study[J]. Lancet Oncol, 2012, 13(8): 817-826. [34] Shi RY, Yang XR, Shen QJ, et al. High expression of Dickkopf-related protein 1 is related to lymphatic metastasis and indicates poor prognosis in intrahepatic cholangiocar- cinoma patients after surgery[J]. Cancer, 2013, 119(5): 993-1003. [35] McGoughIan J, Vincent JP. Exosomes in developmental signalling[J]. Development, 2016, 143(14): 2482-2493. [36] Arbelaiz A, Azkargorta M, Krawczyk M, et al. Serum extracellular vesicles contain protein biomarkers for primary sclerosing cholangitis and cholangiocarcinoma[J]. Hepatology, 2017, 66(4): 1125-1143. [37] Clapéron A, Mergey M, Nguyen HB, et al. EGF/EGFR axis contributes to the progression of cholangiocarcinoma through the induction of an epithelial-mesenchymal transition[J]. J Hepatol, 2014, 61(2): 325-332. [38] Sasaki M, Matsubara T, Yoneda N, et al. Overexpression of enhancer of zeste homolog 2 and MUC1 may be related to malignant behaviour in intraductal papillary neoplasm of the bile duct[J]. Histopathology, 2013, 62(3): 446-457. [39] Hoshino A, Costa-Silva B, Shen TL, et al. Tumour exosome integrins determine organo- tropic metastasis[J]. Nature, 2015, 527(7578): 329-335. [40] Yamada D, Rizvi S, Razumilava N, et al. IL-33 facilitates oncogene-induced cholangiocarcino- ma in mice by an interleukin-6-sensitive mechanism[J]. Hepatology, 2015, 61(5): 1627-1642. [41] Sulpice L, Rayar M, Desille M, et al. Molecular profiling of stroma identifies osteopontin as an independent predictor of poor prognosis in intrahepatic cholangiocarcinoma[J]. Hepatology, 2013, 58(6): 1992-2000. [42] Lee CT, Wu TT, Lohse CM, et al. High-mobility group AT-hook 2: an independent marker of poor prognosis in intrahepatic cholangiocarcinoma[J]. Hum Pathol, 2014, 45(11): 2334-2340. [43] Huang L, ChenW, Liang P, et al. Serum CYFRA 21-1 in biliary tract cancers: a reliable biomarker for gallbladder carcinoma and intrahepatic cholangiocarcinoma[J]. Dig Dis Sci, 2015, 60(5): 1273-1283. [44] Lau KS, Dennis JW. N-Glycans in cancer progression[J]. Glycobiology, 2008, 18(10): 750-760. [45] Matsuda A, KunoAtsushi,Kawamoto Toru,et al. Wisteria floribunda agglutinin-positive mucin 1 is a sensitive biliary marker for human cholangiocarcinoma[J]. Hepatology, 2010, 52(1): 174-182. [46] Matsuda A, Kuno A, Matsuzaki H, et al. Glycoproteomics-based cancer marker discovery adopting dual enrichment with Wisteria floribunda agglutinin for high specific glyco-diagnosis of cholangiocarcinoma[J]. J Proteomics, 2013, 85: 1-11. doi: 10.1016/j.jprot.2013.04.017. [47] Indramanee S, Silsirivanit A, Pairojkul C, et al. Aberrant glycosylation in cholangiocarcinoma demonstrated by lectin-histochemistry[J]. Asian Pac J Cancer Prev, 2012, 13(Suppl): 119-124. [48] Saentaweesuk W, Silsirivanit A, Vaeteewoottacharn K, et al. Clinical significance of GalNAcylated glycans in cholangiocarcinoma: Values for diagnosis and prognosis[J]. Clin Chim Acta, 2018, 477: 66-71. doi: 10.1016/j.cca.2017.12.005. |
[1] | 李波波 李道堂 刘曙光 王兴武. 食管癌患者血清中DKK-1的表达[J]. 山东大学学报(医学版), 2209, 47(6): 58-61. |
[2] | 徐平 于国放 李霞. 不同类型甲状腺上动脉PSV对Graves病与桥本氏甲状腺炎鉴别诊断的价值[J]. 山东大学学报(医学版), 2209, 47(6): 62-64. |
[3] | 王欣,邢春燕,杨艳平. 血清磷酸丙酮酸水合酶检测对诊断侵袭性白念珠菌感染的临床价值[J]. 山东大学学报(医学版), 2209, 47(6): 92-94. |
[4] | 郑苏,陈述花,李华,邓劼,陈春红,王晓慧,冯卫星,韩萧迪,张雨佳,李娜,李莫,方方. 脑电变化和BASED评分与54例婴儿痉挛症促肾上腺皮质激素疗效的相关性[J]. 山东大学学报 (医学版), 2022, 60(9): 91-96. |
[5] | 王丽慧,高敏,孔北华. 子宫血管肉瘤2例报告并文献复习[J]. 山东大学学报 (医学版), 2022, 60(9): 108-112. |
[6] | 高中霞,张铭,樊明德,谭晨阳,王梦迪,王超,樊跃飞,丁守銮,王成伟. 伽玛刀治疗81例肺癌脑转移瘤的疗效及预后因素[J]. 山东大学学报 (医学版), 2022, 60(8): 44-49. |
[7] | 贺士卿,李皖皖,董书晴,牟婧怡,刘宇莹,魏思雨,刘钊,张家新. 基于数据库构建乳腺癌焦亡相关基因的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(8): 34-43. |
[8] | 张玉凤,徐敏,邢秀丽,逄曙光,户克庆. 689例非ST段抬高型心肌梗死患者的临床流行病学特征[J]. 山东大学学报 (医学版), 2022, 60(7): 118-122. |
[9] | 查菁,郭婧,左秀丽. 少见类型肠梗阻病因病例报告1例并文献复习[J]. 山东大学学报 (医学版), 2022, 60(6): 130-132. |
[10] | 李琳琳,王凯. 基于生物信息学预测肝细胞癌预后基因[J]. 山东大学学报 (医学版), 2022, 60(5): 50-58. |
[11] | 宋敏,周玉侠,高璐,刘娜,王菊,古晋,张艳萍. 1例6 q三体嵌合胎儿的产前诊断[J]. 山东大学学报 (医学版), 2022, 60(5): 109-113. |
[12] | 郑昊天,王光辉,赵小刚,王亚东,曾榆凯,杜贾军. 基于数据库LKB1突变肺腺癌DNA异常甲基化位点构建的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(3): 51-58. |
[13] | 左立平,蒋丰洋,周斌彬,范金蕾,梁永锋,邓展昊,于德新. 术前MRI在预测169例肝细胞肝癌微血管侵犯及早期复发的价值[J]. 山东大学学报 (医学版), 2022, 60(3): 89-95. |
[14] | 王静,刘粉,曾荣,黄思源,许长娟,梁子婷,董亮. 以胸膜病变为特征的IgG4相关性肺疾病1例[J]. 山东大学学报 (医学版), 2022, 60(3): 114-116. |
[15] | 薛美娟,石艳,邵琳琳,王琳,张昀,张阿敏. 遗传性血栓性血小板减少性紫癜1例并文献复习[J]. 山东大学学报 (医学版), 2022, 60(3): 121-124. |
|