您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2018, Vol. 56 ›› Issue (10): 18-23.doi: 10.6040/j.issn.1671-7554.0.2018.1026

• • 上一篇    

外泌体生物标志物与肿瘤发生发展的研究进展

王传新   

  1. 山东大学第二医院检验医学中心 山东省肿瘤标志物检测工程实验室, 山东 济南 250033
  • 收稿日期:2018-09-04 发布日期:2022-09-27
  • 通讯作者: 王传新. E-mail:cxwang@sdu.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(81772271、81472025)

Research progress of exosomes biomarkers in tumor development

WANG Chuanxin   

  1. Department of Clinical Laboratory, The Second Hospital of Shandong University;
    Tumor Marker Detection Engineering Laboratory of Shandong Province, Jinan 250033, Shandong, China
  • Received:2018-09-04 Published:2022-09-27

摘要: 外泌体是一种直径为50~200 nm的双层脂质包裹体结构,可携带多种蛋白质、脂质及核酸,在细胞间信息传递中发挥重要作用,其作为一种新型生物标志物已成为近年临床关注的热点。研究发现,肿瘤细胞分泌的外泌体在肿瘤免疫、血管生成、肿瘤微环境调节等肿瘤发生发展过程中均扮演重要角色,并有可能成为药物的天然载体用于肿瘤治疗。随着蛋白组学、基因组学等技术的发展,外泌体的生物学特点和功能研究进一步深入,外泌体提取及检测技术不断进步,为肿瘤临床诊断与治疗提供了新的思路和契机。

关键词: 外泌体, 肿瘤, 生物标志物, 诊断, 非编码RNA, 耐药

Abstract: Exosomes, a double-layer lipid inclusion with a diameter of 50-200 nm, can carry a variety of proteins, lipids and nucleic acids, playing an important role in intercellular information transfer. As a novel biomarker, exosomes has become a hot topic in clinical reasearches in recent years. Studies have found that exosomes secreted by tumor cells play an important role in the development of tumors such as tumor immunity, angiogenesis, and tumor microenvironment 山 东 大 学 学 报 (医 学 版)56卷10期 -王传新.外泌体生物标志物与肿瘤发生发展的研究进展 \=-regulation, and may become the natural carrier of drugs for tumor treatment. With the development of proteomics, genomics and other technologies, the research on the biological characteristics and functions of exosomes has been further deepened, and the extraction and detection of exosomes have been continuously improved, providing new ideas and opportunities for the clinical diagnosis and treatment of tumors.

Key words: Exosome, Tumor, Biomarker, Diagnosis, Non-coding RNA, Drug resistance

中图分类号: 

  • R574
[1] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018[J]. CA Cancer J Clin, 2018, 68(1): 7-30.
[2] Siegel RL, Jemal A, Wender RC, et al. An assessment of progress in cancer control[J]. CA Cancer J Clin, 2018. doi: 10.3322/caac.21460.
[3] Mause S, FandWeber C. Microparticles: protagonists of a novel communication network for intercellular information exchange[J]. Circ Res, 2010, 107(9): 1047-1057.
[4] Szajnik M, Derbis M, Lach M, et al. Exosomes in plasma of patients with ovarian carcinoma: potential biomarkers of tumor progression and response to therapy[J]. Gynecol Obstet, 2013(Suppl 4): 3. doi: 10.4172/2161-0932.S4-003.
[5] Gobbo J, Marcion G, Cordonnier M, et al. Restoring anticancer immune response by targeting tumor-derived exosomes with a hsp70 peptide aptamer[J]. J Natl Cancer Inst, 2015, 108(3): djv330.
[6] Rakoczi E, Perge B, Vegh E, et al. Evaluation of the immunogenicity of the 13-valent conjugated pneumococcal vaccine in rheumatoid arthritis patients treated with etanercept[J]. Joint Bone Spine, 2016, 83(6): 675-679.
[7] Yu DD, Wu Y, Shen HY, et al. Exosomes in development, metastasis and drug resistance of breast cancer[J]. Cancer Sci, 2015, 106(8): 959-964.
[8] Maia J, Caja S, Strano Moraes MC, et al. Exosome-based cell-cell communication in the tumor microenvironment[J]. Front Cell Dev Biol, 2018, 6: 18. doi: 10.3389/fcell.2018.00018.
[9] Johnstone RM, Adam M, Hammond JR, et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles(exosomes)[J]. J Biol Chem, 1987, 262(19): 9412-9420.
[10] EL Andaloussi S, Mager I, Breakefield XO, et al. Extracellular vesicles: biology and emerging therapeutic opportunities[J]. Nat Rev Drug Discov, 2013, 12(5): 347-357.
[11] Rider MA, Hurwitz S, Meckes DG Jr. ExtraPEG: a polyethylene glycol-based method for enrichment of extracellular vesicles[J]. Sci Rep, 2016, 6: 23978. doi: 10.1038/srep23978.
[12] Zaborowski MP, Balaj L, Breakefield XO, et al. Extracellular vesicles: composition, biological relevance, and methods of study[J]. Bioscience, 2015, 65(8): 783-797.
[13] Chen G, Huang AC, Zhang W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response[J]. Nature, 2018, 560(7718): 382-386.
[14] Yuyama K, Sun H, Mitsutake S, et al. Sphingolipid-modulated exosome secretion promotes clearance of amyloid-beta by microglia[J]. J Biol Chem, 2012, 287(14): 10977-10989.
[15] Yan W, Wu X, Zhou W, et al. Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells[J]. Nat Cell Biol, 2018, 20(5): 597-609.
[16] Kalra H, Adda CG, Liem M, et al. Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma[J]. Proteomics, 2013, 13(22): 3354-3364.
[17] Zheng Q, Bao C, Guo W, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs[J]. Nat Commun, 2016, 7: 11215. doi: 10.1038/ncomms11215.
[18] Madhavan B, Yue S, Galli U, et al. Combined evaluation of a panel of protein and miRNA serum-exosome biomarkers for pancreatic cancer diagnosis increases sensitivity and specificity[J]. Int J Cancer, 2015, 136(11): 2616-2627.
[19] Melo SA, Luecke LB, Kahlert C, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer[J]. Nature, 2015, 523(7559): 177-182.
[20] Peinado H, Alec Kovic M, Lavotshkin S, et al. Corrigendum: melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET[J]. Nat Med, 2016, 22(12): 1502.
[21] Logozzi M, Angelini DF, Iessi E, et al. Increased PSA expression on prostate cancer exosomes in in vitro condition and in cancer patients[J]. Cancer Lett, 2017, 403: 318-329. doi: 10.1016/j.canlet.2017.06.036.
[22] Beckham CJ, Olsen J, Yin PN, et al. Bladder cancer exosomes contain EDIL-3/Del1 and facilitate cancer progression[J]. J Urol, 2014, 192(2): 583-592.
[23] Alegre E, Zubiri L, Perez-Gracia JL, et al. Circulating melanoma exosomes as diagnostic and prognosis biomarkers[J]. Clin Chim Acta, 2016, 454: 28-32. doi: 10.1016/j.cca.2015.12.031
[24] Hoshino A, Costa-Silva B, Shen TL, et al. Tumour exosome integrins determine organotropic metastasis[J]. Nature, 2015, 527(7578): 329-335.
[25] Richards KE, Zeleniak AE, Fishel ML, et al. Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells[J]. Oncogene, 2017, 36(13): 1770-1778.
[26] Rao Q, Zuo B, Lu Z, et al. Tumor-derived exosomes elicit tumor suppression in murine hepatocellular carcinoma models and humans in vitro[J]. Hepatology, 2016, 64(2): 456-472.
[27] Pascucci L, Cocce V, Bonomi A, et al. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery[J]. J Control Release, 2014, 192(28): 262-270.
[28] Djebali S, Davis CA, Merkel A, et al. Landscape of transcription in human cells[J]. Nature, 2012, 489(7414): 101-108.
[29] Yang S, Sun Z, Zhou Q, et al. MicroRNAs, long noncoding RNAs, and circular RNAs: potential tumor biomarkers and targets for colorectal cancer[J]. Physiol Rev, 2018, 10: 2249-2257. doi: 10.2147/CMAR.S166308
[30] Rabinowits G, Gercel-Taylor C, Day JM, et al. Exosomal microRNA: a diagnostic marker for lung cancer[J]. Clin Lung Cancer, 2009, 10(1): 42-46.
[31] Zheng G, Du L, Yang X, et al. Serum microRNA panel as biomarkers for early diagnosis of colorectal adenocarcinoma[J]. Br J Cancer, 2014, 111(10): 1985-1992.
[32] Jiang X, Du L, Wang L, et al. Serum microRNA expression signatures identified from genome-wide microRNA profiling serve as novel noninvasive biomarkers for diagnosis and recurrence of bladder cancer[J].Int J Cancer, 2015, 136(4): 854-862.
[33] Melo SA, Sugimoto H, O'connell JT, et al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis[J]. Cancer Cell, 2014, 26(5): 707-721.
[34] Zhou W, Fong MY, Min Y, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis[J]. Cancer Cell, 2014, 25(4): 501-515.
[35] Huang X, Yuan T, Liang M, et al. Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer[J]. Eur Urol,2015, 67(1): 33-41.
[36] Han D, Wang M, Ma N, et al. Long noncoding RNAs: novel players in colorectal cancer[J]. Cancer Lett, 2015, 361(1): 13-21.
[37] Lv M, Xu P, Wu Y, et al. LncRNAs as new biomarkers to differentiate triple negative breast cancer from non-triple negative breast cancer[J]. Oncotarget, 2016, 7(11): 13047-13059.
[38] Li H, An J, Wu M, et al. LncRNA HOTAIR promotes human liver cancer stem cell malignant growth through downregulation of SETD2[J]. Oncotarget, 2015, 6(29): 27847-27864.
[39] Du M, Wang W, Jin H, et al. The association analysis of lncRNA HOTAIR genetic variants and gastric cancer risk in a Chinese population[J]. Oncotarget, 2015, 6(31): 31255-31262.
[40] Peter S, Borkowska E, Drayton RM, et al. Identification of differentially expressed long noncoding RNAs in bladder cancer[J]. Clin Cancer Res,2014, 20(20): 5311-5321.
[41] Liang WC, Fu WM, Wong CW, et al. The lncRNA H19 promotes epithelial to mesenchymal transition by functioning as miRNA sponges in colorectal cancer[J]. Oncotarget, 2015, 6(26): 22513-22525.
[42] Zhu J, Liu S, Ye F, et al. Long noncoding RNA MEG3 interacts with p53 protein and regulates partial p53 target genes in hepatoma cells[J]. PLoS One, 2015, 10(10): e0139790. doi: 10.1371/journal.pone.0139790.
[43] Beermann J, Piccoli MT, Viereck J, et al. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches[J]. Physiol Rev, 2016, 96(4): 1297-1325.
[44] Shang X, Li G, Liu H, et al. Comprehensive circular rna profiling reveals that hsa_circ_0005075, a new circular rna biomarker, is involved in hepatocellular crcinoma development[J]. Medicine, 2016, 95(22): e3811. doi: 10.1097/MD.0000000000003811.
[45] Li P, Chen S, Chen H, et al. Using circular RNA as a novel type of biomarker in the screening of gastric cancer[J]. Clin Chim Acta, 2015, 444:132-136. doi: 10.1016/j.cca.2015.02.018.
[46] Wan L, Zhang L, Fan K, et al. Circular RNA-ITCH suppresses lung cancer proliferation via inhibiting the wnt/beta-catenin pathway[J]. Biomed Res Int, 2016, 2016: 1579490. doi: 10.1155/2016/1579490.
[1] 王伟 王沂峰 张岭梅 林琼燕 黄菊. 人卵巢癌OVCAR3细胞系中侧群细胞的分离及其成瘤性、侵袭性的实验研究[J]. 山东大学学报(医学版), 2209, 47(6): 8-11.
[2] 张士宝 刘庆勇 阮喜云 陈杰 张建军 李宗武 杨广笑 王全颖. NT4-SAC-HA2-TAT融合基因表达载体的构建及鉴定[J]. 山东大学学报(医学版), 2209, 47(6): 15-19.
[3] 李波波 李道堂 刘曙光 王兴武. 食管癌患者血清中DKK-1的表达[J]. 山东大学学报(医学版), 2209, 47(6): 58-61.
[4] 徐平 于国放 李霞. 不同类型甲状腺上动脉PSV对Graves病与桥本氏甲状腺炎鉴别诊断的价值[J]. 山东大学学报(医学版), 2209, 47(6): 62-64.
[5] 鹿向东 杨伟 徐广明 曲元明. 脑膜瘤中PPAR-γ的表达及曲格列酮对脑膜瘤培养细胞生长的影响[J]. 山东大学学报(医学版), 2209, 47(6): 65-.
[6] 黄方 康瑞 吴春林. VEGFC、NF-κBp65及Survivin在鼻咽癌中的表达及临床意义[J]. 山东大学学报(医学版), 2209, 47(6): 83-.
[7] 王欣,邢春燕,杨艳平. 血清磷酸丙酮酸水合酶检测对诊断侵袭性白念珠菌感染的临床价值[J]. 山东大学学报(医学版), 2209, 47(6): 92-94.
[8] 葛丽娟 金瑞峰 王纪文 许新升 李癊. 多药耐药基因1 C1236T多态性与癫痫患者对药物反应性的相关性[J]. 山东大学学报(医学版), 2209, 47(6): 99-102.
[9] 孙文雄,吴日超,郑贤静,李丽, 张友忠. 宫颈血管周上皮样细胞肿瘤1例[J]. 山东大学学报 (医学版), 2022, 60(9): 125-128.
[10] 吴瑞芳,李长忠. 女性生育力保护的现状与进展[J]. 山东大学学报 (医学版), 2022, 60(9): 1-7.
[11] 王丽慧,高敏,孔北华. 子宫血管肉瘤2例报告并文献复习[J]. 山东大学学报 (医学版), 2022, 60(9): 108-112.
[12] 张艺馨,赵玉立,封丽. 超声特征及术前CA-125联合对51例卵巢交界性及Ⅰ期恶性肿瘤的鉴别诊断[J]. 山东大学学报 (医学版), 2022, 60(7): 104-109.
[13] 查菁,郭婧,左秀丽. 少见类型肠梗阻病因病例报告1例并文献复习[J]. 山东大学学报 (医学版), 2022, 60(6): 130-132.
[14] 李琳琳,王凯. 基于生物信息学预测肝细胞癌预后基因[J]. 山东大学学报 (医学版), 2022, 60(5): 50-58.
[15] 宋敏,周玉侠,高璐,刘娜,王菊,古晋,张艳萍. 1例6 q三体嵌合胎儿的产前诊断[J]. 山东大学学报 (医学版), 2022, 60(5): 109-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!