您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (11): 87-97.doi: 10.6040/j.issn.1671-7554.0.2025.0135

• 临床医学 • 上一篇    

MMP1、MMP9基因与慢性牙周炎的因果关系:基于两样本孟德尔随机化研究

杨春桃1,左玉2   

  1. 1.泉州医学高等专科学校口腔医学院, 福建 泉州 362011;2.桂林医科大学附属口腔医院口腔修复科, 广西 桂林 541004
  • 发布日期:2025-11-28
  • 通讯作者: 左玉. E-mail:zuo_1102@sina.com

Causal relationship of MMP1 and MMP9 genes with chronic periodontitis: an exploratory study based on two-sample Mendelian randomization

YANG Chuntao1, ZUO Yu2   

  1. 1. School of Stomatology, Quanzhou Medical College, Quanzhou 362011, Fujian, China;
    2. Department of Prosthodontics, Affiliated Stomatology Hospital of Guilin Medical University, Guilin 541004, Guangxi, China
  • Published:2025-11-28

摘要: 目的 采用两样本孟德尔随机化(Mendelian randomization, MR)方法探索MMP1/MMP8/MMP9基因与慢性牙周炎是否存在因果关系。 方法 使用FinnGen R10(于2023年12月公开发布)慢性牙周炎(K11_PERIODON_CHRON)全基因组关联研究(genome-wide association study, GWAS)汇总数据,选择与暴露基因(MMP1/MMP8/MMP9)显著相关且符合标准的单核苷酸多态性作为工具变量,以MMP1/MMP8/MMP9基因作为暴露变量,慢性牙周炎作为结局变量。采用MR-Egger回归、加权中位数、逆方差加权、简单模式、加权模式进行MR分析。用Cochrans Q检验和MR-Egger回归进行异质性检测。用MR-Egger截距和MR-PRESSO分析方法评估水平多效性。并用leave-one-out分析方法评估MR分析结果的整体稳定性。使用比值比(odds ratio, OR)和95%置信区间(confidence interval, CI)来量化MMP1/MMP8/MMP9基因对慢性牙周炎的因果关系。 结果 在数据集ebi-a-GCST90012033(P=0.005, OR=0.955, 95%CI=0.924~0.986)和数据集eqtl-a-ENSG00000196611(P=0.048, OR=0.912, 95%CI=0.832~0.999)中,基于逆方差加权分析的结果提示MMP1基因预测的表达水平与慢性牙周炎风险之间存在显著的因果关系。在数据集prot-a-1920(P=0.087, OR=0.993, 95%CI=0.985~1.001)和数据集eqtl-a-ENSG00000118113(P=0.883, OR=0.992, 95%CI=0.887~1.109)中,基于逆方差加权分析的结果提示MMP8基因预测的表达水平与慢性牙周炎风险之间不存在显著的因果关系。在数据集prot-a-1921(P=0.450, OR=0.985, 95%CI=0.948~1.024)中,基于逆方差加权分析的结果提示MMP9基因预测的表达水平与慢性牙周炎风险之间不存在显著的因果关系。但在数据集eqtl-a-ENSG00000100985(P=2.405×10-5, OR=1.123, 95%CI=1.064~1.184)中,基于逆方差加权分析的结果提示MMP9基因预测的表达水平与慢性牙周炎风险之间存在显著的因果关系。 结论 从遗传学层面,MR分析结果支持MMP1、MMP9基因在慢性牙周炎发病机制中可能发挥致病作用从病因学层面,MMP1、MMP9基因只是慢性牙周炎的致病因素之一。

关键词: MMP1基因, MMP8基因, MMP9基因, 慢性牙周炎, 孟德尔随机化, 单核苷酸多态性, 因果关系

Abstract: Objective To investigate whether the MMP1/MMP8/MMP9 genes have a causal relationship with chronic periodontitis using a two-sample Mendelian randomization(MR)analysis. Methods Genome-wide association study(GWAS)was used to summarize data on chronic periodontitis(phenotype code: K11_PERIODON_CHRON)from the FinnGen R10 database(publicly available since December 2023). Single nucleotide polymorphisms significantly associated with exposure(MMP1/MMP8/MMP9 genes)and meeting the criteria were chosen as instrumental variables. The MMP1, MMP8 and MMP9 genes were defined as exposure variables and chronic periodontitis was defined as the outcome variable. MR analyses were performed using MR-Egger regression, weighted median, inverse variance weighted(IVW), weighted mode and simple mode methods. Heterogeneity was assessed using the Cochrans Q test and MR-Egger regression. Horizontal pleiotropy was evaluated using the MR-Egger intercept test and MR-PRESSO analysis. The general stability of the MR results was examined by leave-one-out analysis. The causal relationship between the MMP1/MMP8/MMP9 genes and chronic periodontitis was quantified using odds ratio(OR)and 95% confidence interval(CI). Results Based on inverse variance weighted(IVW)analysis, a significant causal relationship was observed between genetically predicted MMP1 expression and the risk of chronic periodontitis in the ebi-a-GCST90012033 dataset(P=0.005, OR=0.955, 95%CI=0.924-0.986)and the eqtl-a-ENSG00000196611 dataset(P=0.048, OR=0.912, 95%CI=0.832-0.999). In contrast, IVW results did not show a significant causal association between genetically predicted MMP8 expression and chronic periodontitis in the prot-a-1920 dataset(P=0.087, OR=0.993, 95%CI=0.985-1.001)and the eqtl-a-ENSG00000118113 dataset(P=0.883, OR=0.992, 95%CI=0.887-1.109). Similarly, no significant causal relationship was found between genetically predicted MMP9 expression and chronic periodontitis in the prot-a-1921 dataset(P=0.450, OR=0.985, 95%CI=0.948-1.024). Although IVW analysis based on the dataset eqtl-a-ENSG00000100985 yielded a statistically significant result(P=2.405×10-5, OR=1.123, 95%CI=1.064-1.184), the general evidence consistently support a robust causal association between MMP9 expression and chronic periodontitis. Conclusion From a genetic point of view, the results of the MR analysis support a potential pathogenic role for MMP1 and MMP9 in the development of chronic periodontitis. From an etiological perspective, MMP1 and MMP9 may be contributing factors, although not exclusive, involved in the pathogenesis of chronic periodontitis.

Key words: MMP1 gene, MMP8 gene, MMP9 gene, Chronic periodontitis, Mendelian randomization, Single nucleotide polymorphisms, Causal relationship

中图分类号: 

  • R781.4+2
[1] Wan CY, Yin Y, Li X, et al. MMP-9 deficiency accele-rates the progress of periodontitis[J]. Genes Dis, 2024, 11(5): 101231. doi: 10.1016/j.gendis.2024.101231
[2] 王亚敏, 张瑞敏. 基质金属蛋白酶作为牙周炎调节因子的研究进展[J]. 口腔医学, 2019, 39(3): 271-274. WANG Yamin, ZHANG Ruimin. Research progress of matrix metalloproteinases as modulators of periodontitis[J]. Stomatology, 2019, 39(3): 271-274.
[3] Astolfi CM, Shinohara AL, da Silva RA, et al. Genetic polymorphisms in the MMP-1 and MMP-3 gene may contribute to chronic periodontitis in a Brazilian population[J]. J Clin Periodontol, 2006, 33(10): 699-703.
[4] Li G, Yue Y, Tian Y, et al. Association of matrix metalloproteinase(MMP)-1, 3, 9, interleukin(IL)-2, 8 and cyclooxygenase(COX)-2 gene polymorphisms with chronic periodontitis in a Chinese population[J]. Cytokine, 2012, 60(2): 552-560.
[5] Saremi L, Esmaeili S, Ghaffari ME, et al. Evaluation of matrix metalloproteinase-1, -2, -3, -7, and -13 gene polymorphisms in patients with chronic periodontitis and healthy controls[J]. Clin Oral Investig, 2023, 27(12): 7417-7423.
[6] Huang SJ, Li R, Xu S, et al. Assessment of bidirectional relationships between circulating cytokines and periodontitis: Insights from a mendelian randomization analysis[J]. Front Genet, 2023,14: 1124638. doi: 10.3389/fgene.2023.1124638
[7] Zhao SS, Mackie SL, Zheng J. Why clinicians should know about Mendelian randomization[J]. Rheumatology(Oxford), 2021, 60(4): 1577-1579.
[8] Zhou H, Qi YX, Cao RY, et al. Causal relationship between mitochondrial biological function and periodontitis: evidence from a mendelian randomization study[J]. Int J Mol Sci, 2024, 25(14): 7955. doi: 10.3390/ijms25147955
[9] Yan Q, Forno E, Herrera-Luis E, et al. A genome-wide association study of asthma hospitalizations in adults[J]. J Allergy Clin Immunol, 2021, 147(3): 933-940.
[10] Wang Y, Chu T, Gong Y, et al. Mendelian randomization supports the causal role of fasting glucose on periodontitis[J]. Front Endocrinol(Lausanne), 2022,13: 860274. doi: 10.3389/fendo.2022.860274
[11] Ma Y, Cai J, Liu LW, et al. Causal relationships exist between polycystic ovary syndrome and adverse pregnancy and perinatal outcomes: a Mendelian randomization study[J]. Front Endocrinol(Lausanne), 2024, 15: 1327849. doi: 10.3389/fendo.2024.1327849
[12] Luchian I, Goriuc A, Sandu D, et al. The role of matrix metalloproteinases(MMP-8, MMP-9, MMP-13)in periodontal and peri-Implant pathological processes[J]. Int J Mol Sci, 2022, 23(3): 1806. doi: 10.3390/ijms23031806
[13] Bassiouni W, Ali MAM, Schulz R. Multifunctional intracellular matrix metalloproteinases: implications in disease[J]. Febs J, 2021, 288(24): 7162-7182.
[14] Zhao X, Chen J, Sun H, et al. New insights into fibrosis from the ECM degradation perspective: the macrophage-MMP-ECM interaction[J]. Cell Biosci, 2022,12(1): 117. doi: 10.1186/s13578-022-00856-w
[15] Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, et al. The roles of matrix metalloproteinases and their inhibitors in human diseases[J]. Int J Mol Sci, 2020, 21(24): 9739. doi: 10.3390/ijms21249739
[16] Atanasova T, Stankova T, Bivolarska A, et al. Matrix metalloproteinases in oral health-special attention on MMP-8[J]. Biomedicines, 2023, 11(6): 1514. doi: 10.3390/biomedicines11061514
[17] Wang F, Guan M, Wei L, et al. IL-18 promotes the secretion of matrix metalloproteinases in human periodontal ligament fibroblasts by activating NF-κB signaling[J]. Mol Med Rep, 2019, 19(1): 703-710.
[18] Nokhbehsaim M, Nogueira AVB, Damanaki A, et al. Regulation of matrix metalloproteinase-1 by filifactor alocis in human gingival and monocytic cells[J]. Clin Oral Investig, 2020, 24(6): 1987-1995.
[19] Kim JM, Noh EM, You YO, et al. Downregulation of matriptase inhibits porphyromonas gingivalis lipopolysaccharide-induced matrix metalloproteinase-1 and proinflammatory cytokines by suppressing the TLR4/NF-κB signaling pathways in human gingival fibroblasts[J]. Biomed Res Int, 2022: 3865844. doi: 10.1155/2022/3865844
[20] Kim SJ, Lee SH, Quang BD, et al. Avenanthramide-C shows potential to alleviate gingival inflammation and alveolar bone loss in experimental periodontitis[J]. Mol Cells, 2023, 46(10): 627-636.
[21] Hall MC, Young DA, Waters JG, et al. The comparative role of activator protein 1 and Smad factors in the regulation of Timp-1 and MMP-1 gene expression by transforming growth factor-beta 1[J]. J Biol Chem, 2003, 278(12): 10304-10313.
[22] Ho HH, Antoniv TT, Ji JD, et al. Lipopolysaccharide-induced expression of matrix metalloproteinases in human monocytes is suppressed by IFN-gamma via superinduction of ATF-3 and suppression of AP-1[J]. J Immunol, 2008, 181(7): 5089-5097.
[23] Sun Y, Sun Y, Wenger L, et al. p53 down-regulates human matrix metalloproteinase-1(Collagenase-1)gene expression[J]. J Biol Chem, 1999, 274(17): 11535-11540.
[24] Nagarajan R, Miller CS, Dawson D III, et al. Biologic modelling of periodontal disease progression[J]. J Clin Periodontol, 2019, 46(2): 160-169.
[25] Hernández M, Baeza M, Contreras J, et al. MMP-8, TRAP-5, and OPG levels in GCF diagnostic potential to discriminate between healthy patients, mild and severe periodontitis sites[J]. Biomolecules, 2020, 10(11): 1500. doi: 10.3390/biom10111500
[26] Zhang Y, Kang N, Xue F, et al. Evaluation of salivary biomarkers for the diagnosis of periodontitis[J]. BMC Oral Health, 2021, 21(1): 266. doi: 10.1186/s12903-021-01600-5
[27] Kluknavská J, Rabajdová M, Urban P, et al. Expression of selected inflammatory proteins and metalloproteinases in periodontitis[J]. Eur Rev Med Pharmacol Sci, 2022, 26(6): 1825-1831.
[28] Teles FRF, Chandrasekaran G, Martin L, et al. Salivary and serum inflammatory biomarkers during periodontitis progression and after treatment[J]. 2024, 51(12): 1619-1631.
[1] 葛丽娟 金瑞峰 王纪文 许新升 李癊. 多药耐药基因1 C1236T多态性与癫痫患者对药物反应性的相关性[J]. 山东大学学报(医学版), 2209, 47(6): 99-102.
[2] 王乐,罗清馨,吴思佳,吴雨桐,葛祎蕾,俞一凡,韦云,吉寒冰,刘铁梅,张紫妍,修佳伟,薛付忠,李洪凯. 虚弱和癫痫关联研究:前瞻性队列和孟德尔随机化分析[J]. 山东大学学报 (医学版), 2025, 63(9): 20-30.
[3] 刘位龙,王玎,赵超,王宁,张旭,苏萍,宋书典,张娜,迟蔚蔚. 基于BERT和图注意力网络的医疗文本因果关系抽取算法[J]. 山东大学学报 (医学版), 2025, 63(8): 61-68.
[4] 王雪梅,杨豪,宋洋,程世超,张婷婷,王艳春. 抗糖尿病药物与女性恶性肿瘤的因果关联:一项两样本孟德尔随机化分析[J]. 山东大学学报 (医学版), 2025, 63(6): 67-77.
[5] 黄馨,王梦雪,付书璠,张琦悦,徐力. 代谢综合征及其组分与消化系统恶性肿瘤的因果关联:两样本孟德尔随机化研究[J]. 山东大学学报 (医学版), 2025, 63(5): 86-94.
[6] 王小磊,方骏,王安,朱武晖,史光军. 两样本孟德尔随机化分析肠道菌群与肝外胆管癌的因果关系[J]. 山东大学学报 (医学版), 2025, 63(4): 44-50.
[7] 李建锋,张展,丁新华,高奋堂,何勤利,谢萍. 欧洲人群饮食因素与认知功能障碍关系的孟德尔随机化分析[J]. 山东大学学报 (医学版), 2025, 63(4): 36-43.
[8] 侯晓慧,Arezou Bikdeli,马超,李大庆. 250例NSTE-ACS患者ACE、KLK1及PTGIS基因型联合相关性分析[J]. 山东大学学报 (医学版), 2025, 63(2): 10-20.
[9] 常宇,胡云峰,王会丰,郭静,张跳,郝雅琴,刘雨. 阑尾切除术与结直肠癌发病风险关联的孟德尔随机化研究[J]. 山东大学学报 (医学版), 2025, 63(2): 77-83.
[10] 杨慧,苏士晶,李芬. 基于双向孟德尔随机化法探讨组织蛋白酶与衰弱的因果关联[J]. 山东大学学报 (医学版), 2025, 63(2): 67-76.
[11] 周坤,刘婷,姜艳菊,胡泽楷,李宇佳,冯武仪,黄继莉,叶汪泉,赵小峰,胡军. 孟德尔随机化分析膝骨关节炎疼痛与肌力的因果关联[J]. 山东大学学报 (医学版), 2025, 63(11): 61-67.
[12] 袁宗怀,潘广晔,迟曰梅,安传国,张永刚. 孟德尔随机化分析低级别浆液性卵巢癌与乳腺癌的因果关系[J]. 山东大学学报 (医学版), 2025, 63(1): 99-107.
[13] 张展,李建锋,李燕玲,王博雯,昂文成林龙珠,王鑫,张小明,谢萍. 饮食因素与子痫前期因果关系的孟德尔随机化分析[J]. 山东大学学报 (医学版), 2024, 62(8): 59-66.
[14] 冯悦,俞一凡,吴思佳,李洪凯,薛付忠. 内脏脂肪组织与肺部疾病的孟德尔随机化研究[J]. 山东大学学报 (医学版), 2024, 62(7): 48-55.
[15] 吴彤,杨晶玉,林盪,徐婉茹,曾宇鋆. 基于孟德尔随机化方法探讨脂质和降脂药物与慢性阻塞性肺病的遗传关联[J]. 山东大学学报 (医学版), 2024, 62(5): 54-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!