您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (7): 11-22.doi: 10.6040/j.issn.1671-7554.0.2025.0047

• 基础医学 • 上一篇    下一篇

木犀草素在炎症微环境下调控Wnt/β-catenin信号通路促进骨髓间充质干细胞成软骨分化的机制

赵灿斌1,邵将2,管东辉2,秦英3,丁强1,郭良1,王伟伟1,陈威1,闫小龙4,曾平5   

  1. 1.广西中医药大学第一临床医学院, 广西 南宁 530200;2.山东中医药大学附属医院骨科, 山东 济南 250014; 3.济南市长清区中医医院骨科, 山东 济南 250300;4.济南市长清区人民医院/山东中医药大学附属医院大学城医院, 山东 济南 250030;5.广西中医药大学第一附属医院骨二科, 广西 南宁 530200
  • 发布日期:2025-07-08
  • 通讯作者: 闫小龙. E-mail:yanxiaolong1986@163.com曾平. E-mail:zengp@gxtcmu.edu.cn
  • 基金资助:
    国家自然科学基金(82160913);山东省自然科学基金(ZR2022MH147)

Mechanism of luteolin regulating Wnt/β-catenin signal pathway in inflammatory microenvironment to promote chondrogenic differentiation of bone marrow mesenchymal stem cells

ZHAO Canbin1, SHAO Jiang2, GUAN Donghui2, QIN Ying3, DING Qiang1, GUO Liang1, WANG Weiwei1, CHEN Wei1, YAN Xiaolong4, ZENG Ping5   

  1. 1. First Clinical Medical College, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China;
    2. Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China;
    3. Department of Orthopedics, Jinan Changqing District Traditional Chinese Medicine Hospital, Jinan 250300, Shandong, China;
    4. Orthopedics Department, Jinan Changqing District Peoples Hospital/University Town Hospital, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250300, Shandong, China;
    5. Department of Orthopedics 2, First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China
  • Published:2025-07-08

摘要: 目的 探讨炎症微环境作用下木犀草素对骨髓间充质干细胞(bone marrow mesenchymal stem cells, BMSCs)成软骨分化以及对Wnt/β-catenin信号通路的影响。 方法 通过网络药理学手段筛选木犀草素调控成软骨分化的基因集,并绘制蛋白质互相作用(protrin-protein interaction, PPI)网络图,随后进行基因本体论(gene ontology, GO)及京都基因与基因组百科全书(kyoto encyclopedia of genes and genomes, KEGG)富集分析,筛选成软骨分化相关靶基因与木犀草素进行分子对接处理。采用细胞计数试剂盒-8(cell counting kit-8, CCK8)及细胞增殖试验检测木犀草素对BMSCs的细胞毒性。将大鼠BMSCs分为对照组(使用2 mL成软骨分化诱导培养基培养)、模型组[使用2 mL含10 ng/mL肿瘤坏死因子(tumor necrosis factor-α, TNF-α)的成软骨分化诱导培养基构建炎症微环境]、低剂量组(在模型组的基础上加入5 μmol木犀草素干预)及高剂量组(在模型组的基础上加入10 μmol木犀草素干预),诱导各组细胞成软骨分化,构建微团软骨细胞球。对微团软骨细胞球包埋切片后进行组织学(番红-固绿、甲苯胺蓝、阿利新蓝)染色,采用RT-qPCR法检测各组软骨细胞球成软骨基因Ⅱ型胶原蛋白(collagen type Ⅱ, COL2)、 Sry相关HMG框转录因子9(sry-box transcription factor 9, SOX9)、聚集蛋白聚糖(aggrecan, ACAN)表达量及Wnt/β-catenin信号通路蛋白激酶A(protein kinase A, PKA)、环磷腺苷效应元件结合蛋白(cAMP response element-binding protein, CBP)、糖原合成酶激酶3β(glycogen synthase kinase 3 bate, GSK3β)、β-连环蛋白(beta-catenin, β-CATENIN)、细胞髓细胞瘤病毒癌基因同源物(cellular myelocytomatosis viral oncogene homolog, c-MYC)、细胞周期蛋白D1(Cyclin D1)表达量,采用Western blotting 法检测Wnt/β-catenin信号通路蛋白PKA、CBP、GSK3β、β-CATENIN、c-MYC、Cyclin D1表达量。 结果 共筛选出木犀草素调控成软骨分化靶基因54个,其中53个参与PPI网络图的构建。靶基因涉及Wnt/β-catenin信号通路正向调控及负向调控等生物过程,木犀草素与Ⅱ型胶原α1蛋白(collagen type Ⅱ alpha 1chain, COL2A1)、SOX9、ACAN 均可良好对接。5 μmol、10 μmol木犀草素无明显细胞毒性。组织学染色显示,模型组软骨细胞球染色比对照组稀疏而且无序,加入木犀草素干预后被明显逆转。与对照组相比,模型组软骨细胞球中COL2、SOX9、ACAN、PKA、CBP、GSK3β、β-CATENIN、c-MC、CYCLIN D1的mRNA表达量明显降低(P<0.05),GSK3β表达量明显升高(P<0.05),Wnt/β-catenin信号通路蛋白PKA、CBP、β-CATENIN、c-MYC、CYCLIN D1表达量明显降低(P<0.05),GSK3β表达量明显升高(P<0.05),加入木犀草素干预后被显著逆转。 结论 在炎症微环境下,木犀草素可促进BMSCs成软骨分化,可能与激活Wnt/β-catenin信号通路有关。

关键词: 木犀草素, 骨髓间充质干细胞, 成软骨分化, 炎症微环境, Wnt/β-catenin信号通路

Abstract: Objective To investigate the effect of luteolin on chondrogenic differentiation of bone marrow mesenchymal stem cells(BMSCs)and the Wnt/β-catenin signaling pathway in an inflammatory microenvironment. Methods Network pharmacology was used to screen gene sets regulated by luteolin for chondrogenic differentiation, and a protein-protein interaction(PPI)network was constructed. Gene ontology(GO)and Kyoto encyclopedia of genes and genomes(KEGG)enrichment analyses were performed to screen chondrogenic differentiation-related target genes, which were then subjected to molecular docking with luteolin. The cytotoxicity of luteolin on BMSCs was determined using the cell counting kit-8(CCK8)and cell proliferation assay. Rat BMSCs were divided into control group(caltured with 2 mL chondrogenic differentiation induction medium), model group [using 2 mL of chondrogenic differentiation induction medium containing 10 ng/mL tumor necrosis factor-α(TNF-α)to construct an inflammatory microenvironment], low-dose group(5 μmol luteolin intervention based on the model group), and high-dose group(10 μmol luteolin intervention based on the model group). Chondrogenic differentiation was induced in each group to construct micromass cartilage pellets. After embedding and sectioning, histologic staining(Safranin-O/Fast Green, Toluidine Blue, Alcian Blue)was performed. RT-qPCR was used to detect the expression of chondrogenic genes collagen type Ⅱ(COL2), Sry-box transcription factor 9(SOX9), and aggrecan(ACAN), as well as the expression of Wnt/β-catenin signaling pathway proteins including protein kinase A(PKA), cAMP response element-binding protein(CBP), glycogen synthase kinase 3β(GSK3β), β-catenin(β-CATENIN), cellular myelocytomatosis viral oncogene homolog(c-MYC), and Cyclin D1. Western blotting was used to determine the protein expression levels of these signaling molecules. Results A total of 54 target genes regulated by luteolin for chondrogenic differentiation were screened, 53 of which were involved in the construction of the PPI network. The target genes were associated with biological processes, including positive and negative regulation of the Wnt/β-catenin signaling pathway. Luteolin showed good docking with collagen type Ⅱ alpha 1 chain(COL2A1), SOX9 and ACAN. Luteolin at 5 μmol and 10 μmol showed no significant cytotoxicity. Histological staining revealed that the model group had sparser and more disorganized staining in cartilage pellets compared to the control group, which was significantly reversed by luteolin intervention. Compared with the control group, the model group had significantly lower mRNA expression of COL2, SOX9, ACAN, PKA, CBP, β-CATENIN, c-MYC, and Cyclin D1(P<0.05), while GSK3β expression was significantly higher(P<0.05). Protein expression levels of PKA, CBP, β-CATENIN, c-MYC, and Cyclin D1 in the Wnt/β-catenin pathway were significantly decreased(P<0.05), and GSK3β was increased(P<0.05)in the model group, all of which were significantly reversed by luteolin intervention. Conclusion Luteolin promotes chondrogenic differentiation of BMSCs in an inflammatory microenvironment, possibly by activating the Wnt/β-catenin signaling pathway.

Key words: Luteolin, Bone marrow mesenchymal stem cells, Chondrogenic differentiation, Inflammatory microenvironment, Wnt/β-catenin signaling pathway

中图分类号: 

  • R274
[1] 余皓, 张洫, 李雪萍, 等. 独活寄生汤对膝关节骨性关节炎患者膝关节功能、疼痛及血清炎症因子的影响[J].中华中医药学刊, 2025, 43(6): 117-121.
[2] 王强, 冷燕奎, 钱毓萍, 等. 内服钱氏健膝方联合中药离子导入治疗早期肝肾亏虚型膝关节骨性关节炎的疗效观察[J]. 中国医药科学, 2024, 14(15): 114-117.
[3] Gong Z, Liu R, Yu W, et al. Acutherapy for knee osteoarthritis relief in the elderly: a systematic review and Meta-analysis[J]. Evid Based Complement Alternat Med, 2019, 2019: 1868107. doi: 10.1155/2019/1868107
[4] Shane Anderson A, Loeser RF. Why is osteoarthritis an age-related disease?[J]. Best Pract Res Clin Rheumatol, 2010, 24(1): 15-26.
[5] 冯晓晴, 蔡道章, 余星磊, 等. 基于GBD大数据中国膝骨关节炎疾病负担现状与趋势分析[J]. 现代预防医学, 2022, 49(10): 1753-1760. FENG Xiaoqing, CAI Daozhang, YU Xinglei, et al. Analysis of the current status and trends of knee osteoarthritis disease burden in china based on GBD big data [J]. Modern Preventive Medicine, 2022, 49(10): 1753-1760.
[6] 丁文斌, 黄江鸿, 徐伟力, 等. 骨髓间充质干细胞向软骨细胞诱导分化的研究进展[J]. 医学综述, 2015, 21(12): 2148-2151. DING Wenbin, HUANG Jianghong, XU Weili, et al. Research progress in induced differentiation of bone marrow mesenchymal stem cells into chondrocytes [J]. Medical Recapitulate, 2015, 21(12): 2148-2151.
[7] 孙庆云, 闫振宇. 间充质干细胞对骨关节炎修复机制的研究进展及应用[J].中国实验动物学报, 2021, 29(2): 262-267. SUN Qingyun, YAN Zhenyu. Research progress and applications of mesenchymal stem cells in the repair mechanisms of osteoarthritis [J]. Acta Laboratorium Animalis Scientiae Sinica, 2021, 29(2): 262-267.
[8] Chen Y, Chen Y, Zhang S, et al. Parathyroid hormone-induced bone marrow mesenchymal stem cell chondrogenic differentiation and its repair of articular cartilage injury in rabbits[J]. Med Sci Monit Basic Res, 2016, 22: 132-145. doi: 10.12659/msmbr.900242
[9] 程鹏. Wnt通路在骨髓间充质干细胞成软骨诱导分化中的作用及机制研究[D]. 武汉: 华中科技大学, 2015.
[10] 陈国茜, 申震, 陈柏屹, 等. 消炎散中活血化瘀药含药血清对成软骨诱导下兔骨髓间充质干细胞Wnt/β-catenin信号通路及SOX9影响的研究[J]. 时珍国医国药, 2020, 31(1): 45-48. CHEN Guoqian, SHEN Zhen, CHEN Boyi, et al. Effects of medicated serum containing blood-activating and stasis-resolving herbs from xiaoyan san on the Wnt/β-Catenin signaling pathway and SOX9 in rabbit bone marrow mesenchymal stem cells during chondrogenic induction [J]. Lishizhen Medicine and Materia Medica Research, 2020, 31(1): 45-48.
[11] 陈淇, 周淳, 齐雪, 等. 炎症微环境作用下P38 MAPK调控Wnt/Ca2+信号通路对牙周膜干细胞成骨分化的影响研究[J]. 医学分子生物学杂志, 2024, 21(6): 576-580. CHEN Qi, ZHOU Chun, QI Xue, et al. Effect of P38 MAPK regulating the Wnt/Ca2+ signaling pathway on osteogenic differentiation of periodontal ligament stem cells under inflammatory microenvironment [J]. Journal of Medical Molecular Biology, 2024, 21(6): 576-580.
[12] 商岚清. 炎症微环境下补正续骨丸对骨髓间充质干细胞成软骨分化的实验研究[D]. 沈阳: 辽宁中医药大学, 2024.
[13] 单鸿哲, 齐鹏坤, 商岚清, 等. 中药干预骨髓间充质干细胞成软骨分化治疗膝骨性关节炎研究进展[J/OL]. 实用中医内科杂志,(2024-03-28)[2025-04-21].http://kns.cnki.net/kcms/detail/21.1187.R.20240327.1620.005.html SHAN Hongzhe, QI Pengkun, SHANG Lanqing, et al. Research progress in treatment of knee osteoarthritis by chinese medicine intervening chondrogenic differentiation of bone marrow mesenchymal stem cells [J/OL]. Journal of Practical Traditional Chinese Internal Medicine,(2024-03-28)[2025-04-21]. http://kns.cnki.net/kcms/detail/21.1187.R.20240327.1620.005.html
[14] 杜娟, 左非非, 魏双艳, 等. 山楂降脂软胶囊中4种黄酮含量的测定[J]. 郑州大学学报(医学版), 2017, 52(4): 456-459. DU Juan, ZUO Feifei, WEI Shuangyan, et al. Determination of content of 4 flavonoids in shanzha jiangzhi soft capsules [J]. Journal of Zhengzhou University(Medical Science Edition), 2017, 52(4): 456-459.
[15] Leyva-López N, Gutierrez-Grijalva EP, Ambriz-Perez DL, et al. Flavonoids as cytokine modulators: a possible therapy for inflammation-related diseases[J]. Int J Mol Sci, 2016, 17(6): 921. doi: 10.3390/ijms17060921
[16] 周哲人, 马训, 么焕开, 等. 柚皮苷和木犀草素联合应用对大鼠BMSCs诱导成骨过程中Wnt/β-cantein通路相关基因表达的影响[J]. 现代生物医学进展, 2023, 23(2): 258-262. ZHOU Zheren, MA Xun, YAO Huankai, et al. Effects of combined application of naringin and luteolin on Wnt/β-Catenin signaling pathway-related gene expression during osteogenic induction of rat BMSCs [J]. Progress in Modern Biomedicine, 2023, 23(2): 258-262.
[17] 郭文锦, 马金玲, 贾斌, 等. 木犀草素通过Wnt/β-catenin通路抑制RAW264.7细胞向破骨细胞分化[J]. 临床口腔医学杂志, 2024, 40(10): 579-585. GUO Wenjin, MA Jinling, JIA Bin, et al. Luteolin inhibits differentiation of RAW264.7 cells into osteoclasts via the Wnt/β-Catenin signaling pathway [J]. Journal of Clinical Stomatology, 2024, 40(10): 579-585.
[18] Zhang L, Su P, Xu C, et al. Chondrogenic differentiation of human mesenchymal stem cells: a comparison between micromass and pellet culture systems[J]. Biotechnol Lett, 2010, 32(9): 1339-1346.
[19] 陈炀, 周中. 基于中药治疗的膝关节骨性关节炎抗炎机制研究进展[J]. 张江科技评论, 2024(3): 123-125.
[20] 韩升龙, 孔令俊, 李万潭, 等. 中药单体及复方干预膝关节骨性关节炎疼痛相关信号通路研究进展[J]. 中国骨质疏松杂志, 2023, 29(10): 1490-1495. HAN Shenglong, KONG Lingjun, LI Wantan, et al. Research progress in intervening pain-related signaling pathways of knee osteoarthritis by chinese medicine monomers and compounds [J]. Chinese Journal of Osteoporosis, 2023, 29(10): 1490-1495.
[21] 邱云开. 神金软膏外敷联合股四头肌增强训练治疗轻中度膝关节骨性关节炎的疗效观察[D]. 南京:南京中医药大学, 2024.
[22] 周宇. 加味曲直汤治疗膝关节骨性关节炎的作用机制研究[D]. 南京:南京中医药大学, 2024.
[23] 顾佳珂. 铈-木犀草素纳米复合物通过抗氧化及免疫调节用于炎症相关疾病的治疗研究[D]. 扬州: 扬州大学, 2024.
[24] 胡涂. 镁通过调控巨噬细胞极化影响间充质干细胞软骨分化的研究[D]. 上海: 上海交通大学, 2018.
[25] 贺自克, 王上增. 淫羊藿苷通过miR-29c/COL2A1轴改善骨关节炎软骨细胞功能[J/OL]. 重庆医科大学学报,(2024-12-10)[2025-04-21]. https://doi.org/10.13406/j.cnki.cyxb.003644 HE Zike, WANG Shangzeng. Icariin improves chondrocyte function in osteoarthritis via the miR-29c/COL2A1 axis [J/OL]. Journal of Chongqing Medical University, 1-10 [2025-04-21]. https://doi.org/10.13406/j.cnki.cyxb.003644
[26] 张铂彦. 基于CRISPR/Cas9基因编辑技术构建COL2A1基因突变所致软骨发育不全疾病猪模型[D]. 长春:吉林大学, 2020.
[27] Haseeb A, Kc R, Angelozzi M, et al. SOX9 keeps growth plates and articular cartilage healthy by inhibiting chondrocyte dedifferentiation/osteoblastic redifferentiation[J]. Proc Natl Acad Sci U S A, 2021, 118(8): e2019152118.
[28] 朱春晖, 刘刚, 陈伟, 等. 虾青素调控tRF-ValAAC对骨关节炎软骨细胞生物学功能的影响及其机制[J]. 中华骨与关节外科杂志, 2024, 17(10): 921-930. ZHU Chunhui, LIU Gang, CHEN Wei, et al. Effects and mechanism of astaxanthin regulating tRF-ValAAC on the biological functions of chondrocytes in osteoarthritis [J]. Chinese Journal of Bone and Joint Surgery, 2024, 17(10): 921-930.
[29] Unguryte A, Bernotiene E, Bagdonas E, et al. Human articular chondrocytes with higher aldehyde dehydrogenase activity have stronger expression of COL2A1 and SOX9[J]. Osteoarthritis Cartilage, 2016, 24(5): 873-882.
[30] 吴枭, 胡静, 李章华. miR-148a-3p对软骨细胞炎性和凋亡的影响及其机制[J]. 山西医科大学学报, 2024, 55(8): 1008-1016. WU Xiao, HU Jing, LI Zhanghua. Effects and mechanism of miR-148a-3p on inflammation and apoptosis of chondrocytes [J]. Journal of Shanxi Medical University, 2024, 55(8): 1008-1016.
[31] Buchtova M, Oralova V, Aklian A, et al. Fibroblast growth factor and canonical WNT/β-catenin signaling cooperate in suppression of chondrocyte differentiation in experimental models of FGFR signaling in cartilage[J]. Biochim Biophys Acta, 2015, 1852(5): 839-850.
[32] 闫小龙, 秦英, 邵将, 等. 姜黄素通过Wnt/β-catenin信号通路调控骨形成的机制[J]. 山东大学学报(医学版), 2024, 62(10): 76-86. YAN Xiaolong, QIN Ying, SHAO Jiang, et al. Mechanism of curcumin regulating bone formation via the Wnt/β-Catenin signaling pathway [J]. Journal of Shandong University(Medical Science Edition), 2024, 62(10): 76-86.
[33] Tew SR, Li Y, Pothacharoen P, et al. Retroviral transduction with SOX9 enhances re-expression of the chondrocyte phenotype in passaged osteoarthritic human articular chondrocytes[J]. Osteoarthritis Cartilage, 2005,13(1): 80-89.
[34] Zhao CB, Li JC, Guo C, et al. An investigation of the potential mechanism of curcumin to regulate osteogenic differentiation of bone marrow-derived mesenchymal stem cells through Wnt/β-catenin signaling pathway based on network pharmacology and experimental validation[J]. J Biol Reg Homeos Ag, 2023, 37(9): 4663-4673.
[1] 闫小龙,秦英,邵将,陈东峰,管东辉,赵灿斌. 姜黄素通过Wnt/β-catenin信号通路调控骨形成的机制[J]. 山东大学学报 (医学版), 2024, 62(10): 76-86.
[2] 张秉芬,周胜红,王哲. 延龄草皂苷通过抑制TGF-β/Smad3与Wnt/β-catenin信号通路改善大鼠肺纤维化[J]. 山东大学学报 (医学版), 2022, 60(8): 23-29.
[3] 洪甲庚,聂洋洋,苏国强. 丙泊酚对结肠癌细胞增殖、迁移及Wnt1和β-catenin表达的影响[J]. 山东大学学报 (医学版), 2020, 58(11): 53-58.
[4] 李景媛,宋玲,林松,宋晖. 不同浓度一氧化碳释放分子-3对大鼠骨髓间充质干细胞成骨分化的影响[J]. 山东大学学报(医学版), 2017, 55(7): 31-37.
[5] 宋轲,刘寰,武文亮,刘海春,李尚志,陈允震. 骨髓间充质干细胞、血小板凝胶和体外冲击波联合应用治疗骨不连[J]. 山东大学学报(医学版), 2016, 54(6): 1-6.
[6] 付海燕, 胡占升, 杜红阳, 李潮, 包翠芬. 地黄多糖对过表达Notch1(NICD)大鼠骨髓间充质干细胞诱导分化及增殖的影响[J]. 山东大学学报(医学版), 2015, 53(1): 34-40.
[7] 陈洪忠, 李海珍, 任冬梅. 木犀草素对EA.hy926细胞Nrf2信号通路的激活作用及H2O2致氧化损伤的保护作用[J]. 山东大学学报(医学版), 2014, 52(11): 6-10.
[8] 牟乐明1,孙占胜1,王伯珉1,高平2,初向全3. 骨髓间充质干细胞移植对脊髓损伤大鼠Toll样受体4表达的影响[J]. 山东大学学报(医学版), 2014, 52(1): 37-41.
[9] 刘善文1,王福1, 李彬2,耿海华3,李彩娥4,许哲5,李睿1,肖洁1,张森1,季晓平1. 大鼠骨髓间充质干细胞exosome提取及其心肌细胞H9C2靶向作用的实验探索[J]. 山东大学学报(医学版), 2013, 51(9): 1-7.
[10] 胡苏1,2,逄曙光2,崔莹2,于春晓1,赵家军1,管庆波1. 链脲佐菌素诱导糖尿病大鼠骨髓间充质干细胞成骨分化[J]. 山东大学学报(医学版), 2013, 51(8): 7-12.
[11] 李勉贤,陈弹,李红霞. GATA-4基因增加骨髓间充质干细胞抗缺氧能力的探讨[J]. 山东大学学报(医学版), 2013, 51(7): 6-9.
[12] 杜红阳1,李东宁1,付海燕1,包翠芬2,秦书俭2. 地黄多糖诱导大鼠BMSCs向神经样细胞分化中对Notch信号通路的影响[J]. 山东大学学报(医学版), 2013, 51(12): 1-6.
[13] 徐统震,孙雪飞,任冬梅,杨国涛. 木犀草素抑制肺癌细胞A549的增殖及其联合化疗作用[J]. 山东大学学报(医学版), 2012, 50(7): 50-54.
[14] 张兆华1,王一彪1,栾云2,苏宏1,马宇1,林梅1,孙若鹏3 . 骨髓间充质干细胞移植治疗实验性大鼠肺动脉高压损伤的作用[J]. 山东大学学报(医学版), 2011, 49(8): 31-.
[15] 邢介龙,许运宾,张彦,徐长宪,孟国伟,李勇,鲍卫国. Y染色体追踪大鼠骨髓间充质干细胞心肌移植的实验研究[J]. 山东大学学报(医学版), 2011, 49(7): 74-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!