山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (8): 31-39.doi: 10.6040/j.issn.1671-7554.0.2023.0169
• 临床医学 • 上一篇
王亚楠,梁传杰,贾梦琪,苑辉卿
WANG Yanan, LIANG Chuanjie, JIA Mengqi, YUAN Huiqing
摘要: 目的 探讨内质网二硫键异构酶(PDI)在肺癌发生及化疗药物治疗中的作用。 方法 利用Human Protein Atlas软件数据库筛选在肺组织有表达的PDI家族成员;利用qRT-PCR技术对临床10例患者的肺癌及癌旁组织中的部分PDI家族成员mRNA水平差异进行分析,进一步利用免疫印迹技术对临床4~6例患者的肺癌及癌旁组织部分PDI家族成员的蛋白表达差异进行分析,并利用免疫组化技术进行验证,分析变化显著的差异基因与患者预后的关系,重点考察TMX1在肺癌发生发展中的作用。利用qRT-PCR、免疫印迹技术分析TMX1在肺癌细胞、肺癌多药耐药细胞及非肿瘤上皮细胞的转录和蛋白水平。通过脂质体转染构建过表达和敲低TMX1的细胞,利用MTT实验检测TMX1对肺癌细胞存活的影响,并分析TMX1对化疗药物顺铂和多西紫杉醇药效的影响。 结果 临床样本检测结果显示,与癌旁组织相比,肺癌组织中PDIA2的mRNA和蛋白水平降低,PDIA3、PDIA6、TMX1、TMX3的mRNA水平均明显升高。对TCGA数据库基因表达和预后关系分析结果显示,PDIA2、TMX1低表达者预后好;而PDIA6高表达时生存期略有延长,PDIA3、TMX3的表达高,生存期显著延长。对TMX1的功能进行基础表达分析,结果显示,相对于非肿瘤的上皮细胞,TMX1在不同类型肺癌细胞的转录水平都较高,但其蛋白表达在肺腺癌A549细胞、小细胞肺癌H446细胞中明显升高;发现TMX1在肺癌的耐药细胞中表达升高,敏感细胞经顺铂和多西紫杉醇处理后其表达上调。下调TMX1的表达,肺癌A549细胞存活减少,且对顺铂和多西紫杉醇的敏感性增加;而在低表达的H1688细胞中过表达TMX1,细胞的存活增加,对顺铂和多西紫杉醇更加耐受。 结论 TMX1能够促进肺癌细胞的存活并对顺铂和多西紫杉醇耐药。
中图分类号:
[1] Shergalis AG, Hu S, Bankhead A 3rd, et al. Role of the ERO1-PDI interaction in oxidative protein folding and disease [J]. Pharmacol Ther, 2020, 210: 107525. doi: 10.1016/j.pharmthera.2020.107525. [2] Xiong B, Jha V, Min JK, et al. Protein disulfide isomerase in cardiovascular disease [J]. Exp Mol Med, 2020, 52(3): 390-399. [3] Okumura M, Noi K, Inaba K, et al. Visualization of structural dynamics of protein disulfide isomerase enzymes in catalysis of oxidative folding and reductive unfolding[J]. Curr Opin Struct Biol, 2021, 66: 49-57.doi: 10.1016/j.sbi.2020.10.004. [4] Ma YS, Feng S, Lin L, et al. Protein disulfide isomerase inhibits endoplasmic reticulum stress response and apoptosis via its oxidoreductase activity in colorectal cancer [J]. Cell Signal, 2021, 86: 110076. doi: 10.1016/j.cellsig.2021.110076. [5] 向从明, 陈友干, 孙承文, 等. 微小RNA-15a-5p靶向蛋白质二硫键异构酶A6前体蛋白抑制前列腺癌细胞增殖、迁移及侵袭[J]. 安徽医药, 2021, 25(11): 2214-2218. XIANG Congming, CHEN Yougan, SUN Chengwen, et al. miR-15a-5p inhibits prostate cancer cell proliferation, migration and invasion by targeting PDIA6 [J]. Anhui Medical and Pharmaceutical Journal, 2021, 25(11): 2214-2218. [6] Stojak M, Milczarek M, Kurpinska A, et al. Protein disulphide isomerase A1 is involved in the regulation of breast cancer cell adhesion and transmigration via lung microvascular endothelial cells [J]. Cancers, 2020, 12(10): 2850. doi: 10.3390/cancers12102850. [7] Brychtova V, Mohtar A, Vojtesek B, et al. Mechanisms of anterior gradient-2 regulation and function in cancer [J]. Semin Cancer Biol, 2015, 33: 16-24. doi: 10.1016/j.semcancer.2015.04.005. [8] Wang ZY, Zhang H, Cheng Q. PDIA4: the basic characteristics, functions and its potential connection with cancer [J]. Biomed Pharmacother, 2020, 122: 109688. doi: 10.1016/j.biopha.2019.109688. [9] Thai AA, Solomon BJ, Sequist LV, et al. Lung cancer [J]. Lancet, 2021, 398(10299): 535-554. [10] Bade BC, Dela Cruz CS. Lung cancer 2020: epidemiology, etiology, and prevention [J]. Clin Chest Med, 2020, 41(1): 1-24. [11] 孙瑾喆, 陈骏. DNA甲基化在肺癌顺铂耐药中的研究进展[J]. 中国肺癌杂志, 2023, 26(1): 52-58. SUN Jinzhe, CHEN Jun. Research progress of DNA methylation in cisplatin resistance in lung cancer [J]. Chinese Journal of Lung Cancer, 2023, 26(1): 52-58. [12] Negi H, Merugu SB, Mangukiya HB, et al. Anterior gradient-2 monoclonal antibody inhibits lung cancer growth and metastasis by upregulating p53 pathway and without exerting any toxicological effects: a preclinical study [J]. Cancer Lett, 2019, 449: 125-134. doi: 10.1016/j.canlet.2019.01.025. [13] Chen PH, Cai L, Huffman K, et al. Metabolic diversity in human non-small cell lung cancer cells [J]. Mol Cell, 2019, 76(5): 838-851.e5. [14] Chen Y, Yang LL, Cui TT, et al. HOPX is methylated and exerts tumour-suppressive function through Ras-induced senescence in human lung cancer [J]. J Pathol, 2015, 235(3): 397-407. [15] Ghosh S. Cisplatin: the first metal based anticancer drug [J]. Bioorg Chem, 2019, 88: 102925. doi: 10.1016/j.bioorg.2019.102925. [16] Zhang X, Gibhardt CS, Will T, et al. Redox signals at the ER-mitochondria interface control melanoma progression [J]. EMBO J, 2019, 38(15): e100871. doi: 10.15252/embj.2018100871. [17] Li N, Qian SH, Li B, et al. Quantitative analysis of the human ovarian carcinoma mitochondrial phosphoproteome [J]. Aging, 2019, 11(16): 6449-6468. [18] Gutiérrez T, Simmen T. Endoplasmic reticulum chaperones tweak the mitochondrial calcium rheostat to control metabolism and cell death [J]. Cell Calcium, 2018, 70: 64-75. doi: 10.1016/j.ceca.2017.05.015. [19] Guerra C, Brambilla Pisoni G, Soldà T, et al. The reductase TMX1 contributes to ERAD by preferentially acting on membrane-associated folding-defective polypeptides [J]. Biochem Biophys Res Commun, 2018, 503(2): 938-943. [20] Raturi A, Gutiérrez T, Ortiz-Sandoval C, et al. TMX1 determines cancer cell metabolism as a thiol-based modulator of ER-mitochondria Ca2+ flux [J]. J Cell Biol, 2016, 214(4): 433-444. [21] Krols M, Bultynck G, Janssens S. ER-mitochondria contact sites: a new regulator of cellular calcium flux comes into play [J]. J Cell Biol, 2016, 214(4): 367-370. [22] Matsuo Y, Hirota K. Transmembrane thioredoxin-related protein TMX1 is reversibly oxidized in response to protein accumulation in the endoplasmic reticulum [J]. FEBS Open Bio, 2017, 7(11): 1768-1777. [23] Phan V, Schmidt J, Matyash V, et al. Characterization of Naïve and vitamin C-treated mouse schwann cell line MSC80: induction of the antioxidative thioredoxin related transmembrane protein 1 [J]. J Proteome Res, 2018, 17(9): 2925-2936. [24] Guerra C, Molinari M. Thioredoxin-related transmembrane proteins: TMX1 and little brothers TMX2, TMX3, TMX4 and TMX5 [J]. Cells, 2020, 9(9): 2000. doi: 10.3390/cells9092000. [25] Pisoni GB, Ruddock LW, Bulleid N, et al. Division of labor among oxidoreductases: TMX1 preferentially acts on transmembrane polypeptides [J]. Mol Biol Cell, 2015, 26(19): 3390-3400. |
[1] | 王蕾,向淇,刘学伍. 伴系统性硬化症、类风湿关节炎的副肿瘤神经综合征1例[J]. 山东大学学报 (医学版), 2023, 61(7): 118-120. |
[2] | 钟璐,薛付忠. 基于贝叶斯网络不确定性推理的肺癌风险预测模型[J]. 山东大学学报 (医学版), 2023, 61(4): 86-94. |
[3] | 程传龙,韩闯,房启迪,刘盈,杨淑霞,崔峰,刘靖靖,李秀君. 基于时空地理加权回归模型探索肺癌发病的环境影响因素[J]. 山东大学学报 (医学版), 2023, 61(4): 95-102. |
[4] | 杨咏青,赵鹏,汪玉,马文静,田迷迷,程亚旎,祖璐,林祥涛. 细胞外容积分数对62例不同病理类型肺癌的诊断价值[J]. 山东大学学报 (医学版), 2023, 61(2): 88-94. |
[5] | 韩靖,贾春玲. 肺癌患者胸外手术前治疗牙周基础疾病对预防术后肺炎发生的效果评价[J]. 山东大学学报 (医学版), 2022, 60(9): 113-118. |
[6] | 高中霞,张铭,樊明德,谭晨阳,王梦迪,王超,樊跃飞,丁守銮,王成伟. 伽玛刀治疗81例肺癌脑转移瘤的疗效及预后因素[J]. 山东大学学报 (医学版), 2022, 60(8): 44-49. |
[7] | 秦静,杨飞,陈谦,夏涵岱,刘延国,王秀问. 晚期驱动基因阴性、PD-L1表达阴性非鳞非小细胞肺癌一线治疗方案的网状Meta分析[J]. 山东大学学报 (医学版), 2022, 60(7): 74-82. |
[8] | 王福立,孙银萍,秦杰,荣建胜. DC-CIK细胞联合EGFR-TKI治疗35例老年晚期EGFR突变肺癌的效果[J]. 山东大学学报 (医学版), 2022, 60(7): 110-117. |
[9] | 陈兆波,方敏,薛浩然,刘春艳. 去泛素化酶USP35促进非小细胞肺癌细胞迁移和侵袭[J]. 山东大学学报 (医学版), 2022, 60(4): 30-37. |
[10] | 马瑞杰,朱良明,左太阳,李春海,张楠,孙志钢. 微波消融治疗非小细胞肺癌根治术后肺寡转移瘤的预后分析[J]. 山东大学学报 (医学版), 2022, 60(12): 63-68. |
[11] | 高树庚. 加速康复外科在肺癌围术期管理中的应用[J]. 山东大学学报 (医学版), 2022, 60(11): 1-10. |
[12] | 韩丁培,严越,曹羽钦,孙昕,胡琰霞,汪敏娴,罗艳,施咏梅,谢青,杭钧彪,李鹤成. 加速康复外科理念在胸外科临床实践指导的瑞金医院专家共识[J]. 山东大学学报 (医学版), 2022, 60(11): 11-16. |
[13] | 高会江,魏煜程. 微创袖式肺叶切除手术:免疫治疗时代的机遇和挑战[J]. 山东大学学报 (医学版), 2022, 60(11): 23-27. |
[14] | 刘会宁,彭军,任迎春,杨光,王文豪,刘金锋,田勍. 34例胸腔镜下肺楔形切除与21例肺段切除对位于肺段P区的ⅠA1期非小细胞肺癌治疗比较[J]. 山东大学学报 (医学版), 2022, 60(11): 38-43. |
[15] | 彭岳,刘雷,李原,别凤龙,周博伦,李润泽,冀瑛,白广宇,谭锋维,高禹舜,牟巨伟,薛奇,邱斌,高树庚. 解剖性部分肺叶切除术及围术期加速康复外科的临床综合应用[J]. 山东大学学报 (医学版), 2022, 60(11): 44-53. |
|