山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (8): 1-9.doi: 10.6040/j.issn.1671-7554.0.2022.1302
• 基础医学 •
徐雅宁1,2,张祥林1,2,刘晓雨1,2,郭海洋1,2
XU Yaning1,2, ZHANG Xianglin1,2, LIU Xiaoyu1,2, GUO Haiyang1,2
摘要: 目的 利用成簇规律间隔短回文重复序列(CRISPR)/CRISPR相关蛋白9(Cas9)基因组编辑技术对内源性H1FX进行表位标记来执行染色质免疫共沉淀测序(ChIP-seq),探究前列腺癌22Rv1细胞中H1FX在基因组上的结合位点及分布规律。 方法 以质粒pX330-U6-Chimeric_BB-CBh-hSpCas9为载体,设计特异性向导RNA(gRNA),构建pX330-H1FX重组质粒,引导Cas9核酸酶至接近H1FX终止密码子的位置处进行切割。以含有3×FLAG表位标签、自剪切多肽2A和遗传霉素耐药基因序列的质粒pFETCh_Donor为载体,序列两侧添加与双链断裂两侧区域同源的同源臂(HOMO),构建pFETCh_Donor-HOMO重组质粒。将pX330-H1FX重组质粒和pFETCh_Donor-HOMO重组质粒共转染到前列腺癌22Rv1细胞中,切割DNA并通过同源重组修复的方式整合表位标签。48 h后使用含遗传霉素的培养基筛选细胞。筛选出内源性表位标记的H1FX-FLAG细胞系后使用FLAG抗体进行ChIP。对ChIP富集的DNA和给料对照(Input)DNA进行建库,建库合格后送测序。后续对H1FX ChIP-seq数据与基因表达数据进行整合分析。 结果 Western blotting结果显示,筛选到只表达H1FX-FLAG融合蛋白的细胞系;聚合酶链反应结果显示,FLAG表位标签整合至基因组正确的位置;测序结果显示,插入序列及接头处序列正确,内源性表位标记的H1FX-FLAG细胞系构建成功。H1FX ChIP-seq数据与基因表达数据整合分析发现,高表达基因的启动子区域更倾向于缺乏H1FX的结合。 结论 成功构建了内源性表位标记的H1FX-FLAG细胞系,初步分析了前列腺癌22Rv1细胞中H1FX在基因组上的结合位点及分布规律,为进一步研究H1FX在前列腺癌中的作用提供参考。
中图分类号:
[1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2021, 71(3): 209-249. [2] Xia CF, Dong XS, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants [J]. Chin Med J, 2022, 135(5): 584-590. [3] 刘灿, 李想, 王雷, 等. 2005—2014年中国前列腺癌流行特征[J]. 中华疾病控制杂志, 2021, 25(7): 806-811. LIU Can, LI Xiang, WANG Lei, et al. Chinese prostate cancer epidemiological characteristics from 2005 to 2014 [J]. Chinese Journal of Disease Control & Prevention, 2021, 25(7): 806-811. [4] 李星, 曾晓勇. 中国前列腺癌流行病学研究进展[J]. 肿瘤防治研究, 2021, 48(1): 98-102. LI Xing, ZENG Xiaoyong. Advances in epidemiology of prostate cancer in China [J]. Cancer Research on Prevention and Treatment, 2021, 48(1): 98-102. [5] Chen WQ, Zheng RS, Baade PD, et al. Cancer statistics in China, 2015 [J]. CA Cancer J Clin, 2016, 66(2): 115-132. [6] Fyodorov DV, Zhou BR, Skoultchi AI, et al. Emerging roles of linker histones in regulating chromatin structure and function [J]. Nat Rev Mol Cell Biol, 2018, 19(3): 192-206. [7] Zhu P, Li GH. Structural insights of nucleosome and the 30-nm chromatin fiber [J]. Curr Opin Struct Biol, 2016, 36: 106-115. doi: 10.1016/j.sbi.2016.01.013. [8] Millán-Ariño L, Izquierdo-Bouldstridge A, Jordan A. Specificities and genomic distribution of somatic mammalian histone H1 subtypes [J]. Biochim Biophys Acta, 2016, 1859(3): 510-519. [9] Mayor R, Izquierdo-Bouldstridge A, Millán-Ariño L, et al. Genome distribution of replication-independent histone H1 variants shows H1.0 associated with nucleolar domains and H1X associated with RNA polymerase II-enriched regions [J]. J Biol Chem, 2015, 290(12): 7474-7491. [10] Savic D, Partridge EC, Newberry KM, et al. CETCh-seq: CRISPR epitope tagging ChIP-seq of DNA-binding proteins [J]. Genome Res, 2015, 25(10): 1581-1589. [11] Koch B, Nijmeijer B, Kueblbeck M, et al. Generation and validation of homozygous fluorescent knock-in cells using CRISPR-Cas9 genome editing [J]. Nat Protoc, 2018, 13(6): 1465-1487. [12] Cong L, Zhang F. Genome engineering using CRISPR-Cas9 system [J]. Methods Mol Biol, 2015, 1239: 197-217. doi:10.1007/978-1-4939-1862-1_10. [13] Pallarès Masmitjà M, Knödlseder N, Güell M. CRISPR-gRNA design [J]. Methods Mol Biol, 2019, 1961: 3-11. doi:10.1007/978-1-4939-9170-9_1. [14] Meadows SK, Brandsmeier LA, Newberry KM, et al. Epitope tagging ChIP-seq of DNA binding proteins using CETCh-seq [J]. Methods Mol Biol, 2020, 2117: 3-34. doi: 10.1007/978-1-0716-0301-7_1. [15] Chen SF, Zhou YQ, Chen YR, et al. Fastp: an ultra-fast all-in-one FASTQ preprocessor [J]. Bioinformatics, 2018, 34(17): i884-i890. [16] Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2 [J]. Nat Methods, 2012, 9(4): 357-359. [17] Ramírez F, Dündar F, Diehl S, et al. deepTools: a flexible platform for exploring deep-sequencing data [J]. Nucleic Acids Res, 2014, 42(Web Server issue): W187-W191. [18] Luo YH, Hitz BC, Gabdank I, et al. New developments on the Encyclopedia of DNA Elements(ENCODE)data portal [J]. Nucleic Acids Res, 2020, 48(D1): D882-D889. [19] Rhie SK, Perez AA, Lay FD, et al. A high-resolution 3D epigenomic map reveals insights into the creation of the prostate cancer transcriptome [J]. Nat Commun, 2019, 10(1): 4154. doi:10.1038/s41467-019-12079-8. [20] Di Liegro CM, Schiera G, Di Liegro I. H1.0 linker histone as an epigenetic regulator of cell proliferation and differentiation [J]. Genes, 2018, 9(6): 310. doi: 10.3390/genes9060310. [21] Torres CM, Biran A, Burney MJ, et al. The linker histone H1.0 generates epigenetic and functional intratumor heterogeneity [J]. Science, 2016, 353(6307): aaf1644. doi: 10.1126/science.aaf1644. [22] Wang Q, Chen YC, Xie YH, et al. Histone H1.2 promotes hepatocarcinogenesis by regulating signal transducer and activator of transcription 3 signaling [J]. Cancer Sci, 2022, 113(5): 1679-1692. [23] Liao RC, Chen XY, Cao QH, et al. HIST1H1B promotes basal-like breast cancer progression by modulating CSF2 expression [J]. Front Oncol, 2021, 11: 780094. doi: 10.3389/fonc.2021.780094. [24] Kohli A, Huang SL, Chang TC, et al. H1.0 induces paclitaxel-resistance genes expression in ovarian cancer cells by recruiting GCN5 and androgen receptor [J]. Cancer Sci, 2022, 113(8): 2616-2626. [25] Yusufova N, Kloetgen A, Teater M, et al. Histone H1 loss drives lymphoma by disrupting 3D chromatin architecture [J]. Nature, 2021, 589(7841): 299-305. [26] Xue CY, Greene EC. DNA repair pathway choices in CRISPR-Cas9-mediated genome editing [J]. Trends Genet, 2021, 37(7): 639-656. [27] Symington LS, Gautier J. Double-strand break end resection and repair pathway choice[J]. Annu Rev Genet, 2011, 45: 247-271. doi: 10.1146/annurev-genet-110410-132435. |
[1] | 许振,刁统祥,臧振杰,邵丁昌,张奇,孙鼎琪,傅强. 前列腺特异性抗原同源异构体2及其衍生指标在前列腺癌诊断中的价值[J]. 山东大学学报 (医学版), 2022, 60(6): 51-56. |
[2] | 孙浩瑜,姜鑫,陈守臻,曲思凤,史本康. 多参数磁共振联合前列腺健康指数对PSA灰区临床有意义前列腺癌的诊断价值[J]. 山东大学学报 (医学版), 2022, 60(6): 46-50. |
[3] | 史本康,陈守臻,曲思凤,王勇,刘磊. 临床常见快速进展前列腺癌临床特点及研究进展[J]. 山东大学学报 (医学版), 2021, 59(9): 110-116. |
[4] | 徐兵,李勇,刘明,刘永辉. 沉默PRRX1基因表达可增强前列腺癌耐药细胞株PC-3/DTX对多西他赛的敏感性[J]. 山东大学学报 (医学版), 2021, 59(6): 103-110. |
[5] | 孙鼎琪,傅强,张辉,刘帅,刁统祥,曹庆伟,张克勤. 多参数磁共振与经直肠超声融合前列腺靶向穿刺活检在检测PI-RADS≥3前列腺癌中的临床价值[J]. 山东大学学报 (医学版), 2021, 59(4): 108-113. |
[6] | 朱刚,张凯. 中国前列腺癌筛查的现状和挑战[J]. 山东大学学报 (医学版), 2019, 57(1): 11-15. |
[7] | 周芳坚,黄华,李永红. 前列腺癌的局灶冷冻治疗[J]. 山东大学学报 (医学版), 2019, 57(1): 6-10. |
[8] | 吕家驹,胡佳林,丁森泰. 前列腺癌局部治疗的研究进展[J]. 山东大学学报 (医学版), 2019, 57(1): 1-5. |
[9] | 韩邦旻,荆翌峰. 寡转移前列腺癌的临床处理策略[J]. 山东大学学报 (医学版), 2019, 57(1): 26-29. |
[10] | 姚旭东. 局部晚期前列腺癌手术治疗策略及疗效[J]. 山东大学学报 (医学版), 2019, 57(1): 21-25. |
[11] | 王海涛. 去势抵抗性前列腺癌精准治疗的研究进展[J]. 山东大学学报 (医学版), 2019, 57(1): 30-35. |
[12] | 宿恒川,朱耀,戴波,刘畅,胡四龙,叶定伟. PSMA SPECT/CT检查引导下的挽救性淋巴结清扫术在生化复发前列腺癌患者治疗中的价值[J]. 山东大学学报 (医学版), 2019, 57(1): 36-40. |
[13] | 翟红运, 张登禄, 王光杰, 孔峰, 程广辉, 赵升田. 小鼠胚胎干细胞分泌因子对前列腺癌细胞作用的体外研究[J]. 山东大学学报(医学版), 2015, 53(9): 8-12. |
[14] | 丁焕1,孙颖1,黎晓晴2,黎莉1. PARP抑制剂联合吉西他滨或多西他赛对雄激素非依赖性前列腺癌PC3细胞增殖的影响[J]. 山东大学学报(医学版), 2014, 52(1): 33-36. |
[15] | 高逢彬,司曼飞,刘永青,牛蕾蕾,苑辉卿. 网脊衣酸上调p21CIP1蛋白诱导前列腺癌细胞周期阻滞的作用分析[J]. 山东大学学报(医学版), 2013, 51(12): 34-40. |
|