您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (9): 57-63.doi: 10.6040/j.issn.1671-7554.0.2021.0953

• 专家综述 • 上一篇    下一篇

基于肿瘤临床前模型建立头颈癌新型药物基因组学的必要性及展望

孙树洋,张志愿   

  1. 上海交通大学医学院附属第九人民医院口腔颌面-头颈肿瘤科, 上海交通大学口腔医学院, 国家口腔医学中心, 国家口腔疾病临床医学研究中心, 上海市口腔医学重点实验室, 上海 200011
  • 发布日期:2021-10-15
  • 通讯作者: 孙树洋. E-mail:sunshuyang@sjtu.edu.cn
  • 基金资助:
    国家自然科学基金重点项目(82030085);国家重点研发计划(2017YFC0908500)

Establishing the novel pharmacogenomics of head and neck cancer based on preclinical tumor models: necessity and prospect

SUN Shuyang, ZHANG Zhiyuan   

  1. Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth Peoples Hospital, Shanghai Jiao Tong University School of Medicine;
    College of Stomatology, Shanghai Jiao Tong University;
    National Center for Stomatology;
    National Clinical Research Center for Oral Diseases;
    Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
  • Published:2021-10-15

摘要: 头颈癌是全球第七大恶性肿瘤类型,超过60%患者初次确诊即为中晚期。靶向治疗和免疫治疗的发展已经显著推动了头颈癌治疗策略的转型,但是临床获益有待进一步提升。肿瘤临床前模型保留了患者肿瘤的基因和表型的异质性,已广泛应用于临床前药物筛选和验证体系。药物基因组学通过将基因组学和药物响应进行匹配,能够基于肿瘤异质性基础进行患者分层,优化治疗策略并挖掘新治疗靶点。本文概述药物基因组学的发展史,从头颈癌治疗现状和异质性特征出发,探讨借助临床前模型开展新型药物基因组学的必要性和可行性。

关键词: 药物基因组学, 人源性肿瘤异种移植瘤, 人源肿瘤来源的原代肿瘤细胞, 肿瘤异质性, 头颈癌

Abstract: Head and neck cancer is the seventh common malignant tumor in the world. For more than 60% patients, the diagnosis is made at an intermediate or advanced stage. Although the development of targeted therapy and immunotherapy has significantly promoted the transformation of therapeutic strategies of head and neck cancer, there is still an urgent need to expand the clinical benefits. Preclinical models of cancer, which maintain the genetic and phenotypic heterogeneity from their parental tumors, have been widely used in the preclinical drug screening and validation. By matching genomics and drug response, pharmacogenomics can stratify patients based on tumor heterogeneity, optimize treatment strategies, and discover new therapeutic targets. This paper outlines the history of pharmacogenomics, and discusses the necessity and feasibility of developing pharmacogenomics with the aid of preclinical models in the context of the current treatment status and tumor heterogeneity of head and neck cancer.

Key words: Pharmacogenomics, Patient-derived xenografts, Patient-derived cancer cells, Tumor heterogeneity, Head and neck cancer

中图分类号: 

  • R739.8
[1] Turajlic S, Sottoriva A, Graham T, et al. Resolving genetic heterogeneity in cancer [J]. Nat Rev Genet, 2019, 20(7): 404-416.
[2] Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021 [J]. Ca Cancer J Clin, 2021, 71(1): 7-33.
[3] Chow LQM. Head and neck cancer [J]. N Engl J Med, 2020, 382(1): 60-72.
[4] Roden DM, McLeod HL, Relling MV, et al. Pharmacogenomics [J]. Lancet, 2019, 394(10197): 521-532.
[5] Motulsky AG. Drug reactions enzymes, and biochemical genetics [J]. JAMA, 1957, 165(7): 835-837.
[6] Lehmann H, Ryan E. The familial incidence of low pseudocholinesterase level [J]. Lancet, 1956, 271(6934): 124.
[7] Kalow W, Staron N. On distribution and inheritance of atypical forms of human serum cholinesterase, as indicated by dibucaine numbers [J]. Can J Biochem Physiol, 1957, 35(12): 1305-1320.
[8] Alving AS, Carson PE, Flanagan CL, et al. Enzymatic deficiency in primaquine-sensitive erythrocytes [J]. Science, 1956, 124(3220): 484-485.
[9] Relling MV, Evans WE. Pharmacogenomics in the clinic [J]. Nature, 2015, 526(7573): 343-350.
[10] 黄民. 药物基因组学与合理用药 [J]. 药学进展, 2018, 42(4): 241-242. HUANG Min. Pharmacogenomics and rational drug use [J]. Progress in Pharmaceutical Sciences, 2018, 42(4): 241-242.
[11] Earl HM, Hiller L, Vallier A-L, et al. 6 versus 12 months of adjuvant trastuzumab for HER2-positive early breast cancer(PERSEPHONE): 4-year disease-free survival results of a randomised phase 3 non-inferiority trial [J]. Lancet, 2019, 393(10191): 2599-2612.
[12] Hehlmann R, Lauseker M, SauBele S, et al. Assessment of imatinib as first-line treatment of chronic myeloid leukemia: 10-year survival results of the randomized CML study IV and impact of non-CML determinants [J]. Leukemia, 2017, 31(11): 2398-2406.
[13] Maemondo M, Inoue A, Kobayashi K, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR [J]. N Engl J Med, 2010, 362(25): 2380-2388.
[14] Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer [J]. Nature, 2019, 575(7782): 299-309.
[15] Kim C, Gao R, Sei E, et al. Chemoresistance evolution in triple-negative breast cancer delineated by single-cell sequencing [J]. Cell, 2018, 173(4): 879-893.
[16] Marusyk A, Janiszewska M, Polyak K. Intratumor heterogeneity: the rosetta stone of therapy resistance [J]. Cancer Cell, 2020, 37(4): 471-484.
[17] Hong SP, Chan TE, Lombardo Y, et al. Single-cell transcriptomics reveals multi-step adaptations to endocrine therapy [J]. Nat Commun, 2019, 10(1): 3840.
[18] Shaffer SM, Dunagin MC, Torborg SR, et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance [J]. Nature, 2017, 546(7658): 431-435.
[19] Murtuza A, Bulbul A, Shen JP, et al. Novel third-generation EGFR tyrosine kinase inhibitors and strategies to overcome therapeutic resistance in lung cancer [J]. Cancer Res, 2019, 79(4): 689-698.
[20] Mok TS, Wu YL, Ahn MJ, et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer [J]. N Engl J Med, 2017, 376(7): 629-640.
[21] Piotrowska Z, Isozaki H, Lennerz JK, et al. Landscape of acquired resistance to osimertinib in EGFR-mutant NSCLC and clinical validation of combined EGFR and RET inhibition with osimertinib and BLU-667 for acquired RET fusion [J]. Cancer Discov, 2018, 8(12): 1529-1539.
[22] Tanaka K, Yu HA, Yang S, et al. Targeting aurora B kinase prevents and overcomes resistance to EGFR inhibitors in lung cancer by enhancing BIM- and PUMA-mediated apoptosis [J]. Cancer Cell, 2021, S1535-6108(21)00383-4.
[23] D'Cruz AK, Vaish R, Kapre N, et al. Elective versus therapeutic neck dissection in node-negative oral cancer [J]. N Engl J Med, 2015, 373(6): 521-529.
[24] Santuray RT, Johnson DE, Grandis JR. New therapies in head and neck cancer [J]. Trends Cancer, 2018, 4(5): 385-396.
[25] Vermorken JB, Trigo J, Hitt R, et al. Open-label, uncontrolled, multicenter phase II study to evaluate the efficacy and toxicity of cetuximab as a single agent in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck who failed to respond to platinum-based therapy [J]. J Clin Oncol, 2007, 25(16): 2171-2177.
[26] Kim HS, Kwon HJ, Jung I, et al. Phase II clinical and exploratory biomarker study of dacomitinib in patients with recurrent and/or metastatic squamous cell carcinoma of head and neck [J]. Clin Cancer Res, 2015, 21(3): 544-552.
[27] William WN, Papadimitrakopoulou V, Lee JJ, et al. Erlotinib and the Risk of Oral Cancer: The Erlotinib Prevention of Oral Cancer(EPOC)Randomized Clinical Trial [J]. JAMA Oncol, 2016, 2(2): 209-216.
[28] Hedberg ML, Peyser ND, Bauman JE, et al. Use of nonsteroidal anti-inflammatory drugs predicts improved patient survival for -altered head and neck cancer [J]. J Exp Med, 2019, 216(2): 419-427.
[29] Adkins D, Ley J, Neupane P, et al. Palbociclib and cetuximab in platinum-resistant and in cetuximab-resistant human papillomavirus-unrelated head and neck cancer: a multicentre, multigroup, phase 2 trial [J]. Lancet Oncol, 2019, 20(9): 1295-1305.
[30] Burtness B, Harrington KJ, Greil R, et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck(KEYNOTE-048): a randomised, open-label, phase 3 study [J]. Lancet, 2019, 394(10212): 1915-1928.
[31] Sacco AG, Chen R, Worden FP, et al. Pembrolizumab plus cetuximab in patients with recurrent or metastatic head and neck squamous cell carcinoma: an open-label, multi-arm, non-randomised, multicentre, phase 2 trial [J]. Lancet Oncol, 2021, 22(6): 883-892.
[32] Seiwert TY, Burtness B, Mehra R, et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck(KEYNOTE-012): an open-label, multicentre, phase 1b trial [J]. Lancet Oncol, 2016, 17(7): 956-965.
[33] Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas [J]. Nature, 2015, 517(7536): 576-582.
[34] McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future [J]. Cell, 2017, 168(4): 613-628.
[35] Elkabets M, Pazarentzos E, Juric D, et al. AXL mediates resistance to PI3Kα inhibition by activating the EGFR/PKC/mTOR axis in head and neck and esophageal squamous cell carcinomas [J]. Cancer Cell, 2015, 27(4): 533-546.
[36] Shu S, Wu HJ, Ge JY, et al. Synthetic lethal and resistance interactions with BET bromodomain inhibitors in triple-negative breast cancer [J]. Mol Cell, 2020, 78(6): 1096-1113.
[37] Amodio V, Yaeger R, Arcella P, et al. EGFR blockade reverts resistance to KRAS G12C inhibition in colorectal cancer [J]. Cancer Discov, 2020, 10(8): 1129-1139.
[38] Zhou R, Shi C, Tao W, et al. Analysis of mucosal melanoma whole-genome landscapes reveals clinically relevant genomic aberrations [J]. Clin Cancer Res, 2019, 25(12): 3548-3560.
[39] Gao H, Korn JM, Ferretti S, et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response [J]. Nat Med, 2015, 21(11): 1318-1325.
[40] Gengenbacher N, Singhal M, Augustin HG. Preclinical mouse solid tumour models: status quo, challenges and perspectives [J]. Nat Rev Cancer, 2017, 17(12): 751-765.
[41] Izumchenko E, Paz K, Ciznadija D, et al. Patient-derived xenografts effectively capture responses to oncology therapy in a heterogeneous cohort of patients with solid tumors [J]. Ann Oncol, 2017, 28(10): 2595-2605.
[42] Barretina J, Caponigro G, Stransky N, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J]. Nature, 2012, 483(7391): 603-607.
[43] Haibe-Kains B, El-Hachem N, Birkbak NJ, et al. Inconsistency in large pharmacogenomic studies [J]. Nature, 2013, 504(7480): 389-393.
[44] Cancer Cell Line Encyclopedia Consortium, Genomics of Drug Sensitivity in Cancer Consortium. Pharmacogenomic agreement between two cancer cell line data sets [J]. Nature, 2015, 528(7580): 84-87.
[45] Haverty PM, Lin E, Tan J, et al. Reproducible pharmacogenomic profiling of cancer cell line panels [J]. Nature, 2016, 533(7603): 333-337.
[46] Bruna A, Rueda OM, Greenwood W, et al. A biobank of breast cancer explants with preserved intra-tumor heterogeneity to screen anticancer compounds [J]. Cell, 2016, 167(1): 260-274..
[47] Qiu Z, Li H, Zhang Z, et al. A pharmacogenomic landscape in human liver cancers [J]. Cancer Cell, 2019, 36(2):179-193.
[48] Sa JK, Hwang JR, Cho Y-J, et al. Pharmacogenomic analysis of patient-derived tumor cells in gynecologic cancers [J]. Genome Biol, 2019, 20(1): 253.
[49] Sa JK, Hong JY, Lee I-K, et al. Comprehensive pharmacogenomic characterization of gastric cancer [J]. Genome Med, 2020, 12(1): 17.
[50] Byrne AT, Alferez DG, Amant F, et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts [J]. Nat Rev Cancer, 2017, 17(4): 254-268.
[1] 王莹,张雅菲,文勇. 过表达YAP基因通过PI3K/AKT/mTOR信号通路促进舌鳞癌增殖[J]. 山东大学学报 (医学版), 2020, 58(2): 21-28.
[2] 陈希彦,王琪,顾伟亭,文勇. 干扰TAZ基因对舌鳞癌细胞CAL27增殖凋亡的影响及其机制[J]. 山东大学学报 (医学版), 2018, 56(10): 79-85.
[3] 马雪,张斌,韩春耀,刘明媛,郝丽静,葛树卿,薛中原. 下调α-catulin基因的表达对舌鳞癌细胞株Tscca侵袭及迁移能力影响的体外研究[J]. 山东大学学报(医学版), 2016, 54(6): 12-15.
[4] 郝丽静,葛树卿,王淑芬,郑文娇,张斌. 索拉非尼对顺铂耐药性舌癌Tca8113/DDP细胞增殖及凋亡影响的体外研究[J]. 山东大学学报(医学版), 2016, 54(1): 17-21.
[5] 王化淳1,黄圣运2,谢红军1,刘文雷1,张捷3,张东升1,2. 蛋白酪氨酸磷酸酶SHP-2在口腔鳞状细胞癌中的表达及临床意义[J]. 山东大学学报(医学版), 2014, 52(2): 82-85.
[6] 刘硕硕,张斌,郭婷婷,董肖婷. PTEN基因转染对人舌鳞癌细胞系SCC-4凋亡的影响及其作用机制[J]. 山东大学学报(医学版), 2013, 51(1): 42-45.
[7] 张东1,何海贤2,董立新3,陈正岗4,王玉敏1,刘少华1. 舌鳞癌组织中半乳糖凝集素-1的表达及其与临床病理因素的相关性研究[J]. 山东大学学报(医学版), 2011, 49(11): 138-.
[8] 张彦升,刘少华,魏奉才,孙善珍 . 肝细胞生长因子及其受体在口腔鳞癌和颈淋巴结中的表达[J]. 山东大学学报(医学版), 2008, 46(4): 420-423.
[9] 王振光,孙善珍,施琳,王东关. 舌鳞癌细胞Tca-8113与舌成纤维细胞间信号传导机制的研究[J]. 山东大学学报(医学版), 2007, 45(5): 446-449.
[10] 黄圣运,张东升,张世周,刘桂军,赵跃然,王来成,刘义庆 . 重组表达载体pIRES-CD、pIRES-TK的构建及其在ACC-2细胞中的表达[J]. 山东大学学报(医学版), 2007, 45(2): 117-123.
[11] 李海燕1,郭小玲2,王建华2,曲伟栋2,赵华强2. 腮腺癌在多形性腺瘤中p16基因的表达及甲基化改变[J]. 山东大学学报(医学版), 2009, 47(11): 108-110.
[12] 刘冠邑,杨丽媛,付振涛,徐爱强,郭晓雷. 2014年山东省口腔癌发病和死亡水平分析[J]. 山东大学学报 (医学版), 2019, 57(7): 102-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张杰,李振华,孙晋浩,暴丽华,刘岳鹏. 恒定磁场对Schwann细胞氧化损伤的保护作用[J]. 山东大学学报(医学版), 2007, 45(3): 229 -232 .
[2] 方英立,马玉燕,刘锡梅,周文 . 急诊剖宫产患者围手术期替硝唑合理应用[J]. 山东大学学报(医学版), 2007, 45(10): 995 .
[3] 姜红菊,李润智,王营,徐冬梅,张梅,张运,李继福 . 冠状动脉粥样硬化斑块形态及介入治疗与MMP-9的关系[J]. 山东大学学报(医学版), 2008, 46(10): 966 -970 .
[4] 郑敏,郝跃伟,刘雪平,赵婷婷. 血小板膜糖蛋白Ibα基因HPA-2、Kozak序列多态性与脑梗死的相关性研究[J]. 山东大学学报(医学版), 2008, 46(3): 292 -295 .
[5] 李明霞,王学禹 . 儿童急性播散性脑脊髓炎31例临床与MRI特点[J]. 山东大学学报(医学版), 2008, 46(8): 828 -830 .
[6] . Graves病131治疗后1年内早发甲减影响因素分析[J]. 山东大学学报(医学版), 2009, 47(9): 5 -6 .
[7] 牛瑞,刘波,邵明举,王伟 . 非小细胞肺癌区域淋巴结中肺组织特异性基因的表达与预后的关系[J]. 山东大学学报(医学版), 2007, 45(9): 884 -885 .
[8] 焦芳芳,刘世青,李飞,李长生,王琴,孙青,鹿伟 . 化瘀理肺方对大鼠肺间质纤维化时Smad7和TGF-β表达的影响[J]. 山东大学学报(医学版), 2007, 45(10): 1054 -1058 .
[9] 赵瑛,颜磊,张辉,于鹏,李明江,赵兴波. 精子相关抗原9在卵巢浆液性上皮肿瘤中的表达[J]. 山东大学学报(医学版), 2012, 50(2): 98 .
[10] 王术芹,齐 峰,吴剑波,孙宝柱. 罗哌卡因对大鼠离体主动脉收缩作用的钙离子调节机制[J]. 山东大学学报(医学版), 2008, 46(8): 773 -776 .