您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (6): 41-46.doi: 10.6040/j.issn.1671-7554.0.2020.130

• • 上一篇    

CT放射组学分析空洞特征在鉴别非结核分枝杆菌肺病与肺结核中的价值

阎庆虎1,2,崔嘉2,杨传彬2,王武章2,于德新1,柴象飞3   

  • 发布日期:2022-09-27
  • 通讯作者: 于德新. E-mail:ydx00330@sina.com

Value of CT radiomics analysis of cavity characteristics in differentiating pulmonary disease of nontuberculous mycobacterium from tuberculosis

YAN Qinghu1,2, CUI Jia2, YANG Chuanbin2, WANG Wuzhang2, YU Dexin1, CHAI Xiangfei3   

  1. 1. Department of Radiology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China;
    2. Department of Radiology, Shandong Provincial Chest Hospital, Jinan 250013, Shandong, China;
    3. Huiying Medical Technology(Beijing)Co., Ltd., Beijing 100192, China
  • Published:2022-09-27

摘要: 目的 探讨计算机体层摄影(CT)放射组学分析技术在鉴别含空洞型非结核分枝杆菌(NTM)肺病与含有类似空洞的肺结核中的价值。 方法 回顾性分析2013年2月至2018年3月在山东省胸科医院和山东大学齐鲁医院经临床证实的空洞型NTM肺病患者51例和含有类似空洞的肺结核患者42例的临床资料。利用双盲法对CT图像进行观测和勾画,勾画出198个感兴趣区(VOI)空洞,使用计算机生成的随机数将80%的VOI分配给训练数据集,20%的VOI分配给验证数据集。利用Radcloud平台提取的1 409个放射组学特征来分析两种疾病CT中空洞特征的差异,利用方差阈值法、K最佳方法及Lasso算法3种方法筛选最佳特征,采用3个受监督的学习分类器(KNN、 SVM、DT)分析受试者工作特征(ROC)曲线。 结果 筛选出94个最佳特征,采用了不同学习分类器分析得到的ROC曲线值均较高。验证集AUC最低值为0.95,最高值达到1.00。验证集的灵敏度和特异度也达到了0.95,通过精度、召回率、F1评分和支持度分析的3种分类器的性能良好。 结论 利用CT放射组学提取出有价值的空洞特征可以弥补肉眼观察的不足,在NTM肺病与肺结核的鉴别中具有重要意义。

关键词: 放射组学, 空洞, 计算机体层摄影, 非结核分枝杆菌肺病, 肺结核

Abstract: Objective To analyze the value of computer tomography(CT)radiomics features on differentiating nontuberculous mycobacteria(NTM)lung diseases with cavity from pulmonary tuberculosis with similar cavity. Methods Clinical data of 51 pulmonary NTM patients and 42 pulmonary tuberculosis patients with similar cavity from February 2013 to March 2018 in Shandong Provincial Chest Hospital and Qilu Hospital of Shandong University were retrospectively analyzed. Double-blind method was used to observe and sketch CT images, and 198 cavities of volume of interests(VOI)were drawn by two experienced radiologists, and then 80% of VOI cavities were allocated to training data set and 20% to verification data set by using random number generated by computer. A total of 1 409 radiomics features extracted from Radcloud platform were used to analyze the differences in CT cavity characteristics of the two diseases. The best features were selected by variance threshold method, K best method and Lasso algorithm. The receiver operating characteristic(ROC)curves were analyzed by three supervised learning classifiers(KNN, SVM and DT). Results A total of 94 best features were selected. The different learning classifiers showed that the lowest and the highest AUC values of validation set were 0.95 and 1.00, respectively. The sensitivity and specificity of the verification set were more than 0.95. The fine performance of the three classifiers was obtained by using four indicators(precision, recall rate, F1 score and support degree). Conclusion Some valuable cavity features can be extracted via CT radiomics, and are helpful for the differential diagnosis between the pulmonary NTM and pulmonary tuberculosis, which may make up for the lack of visual observation of the common CT images.

Key words: Radiomics, Cavity, Computer tomography, Nontuberculous mycobacteria lung diseases, Pulmonary tuberculosis

中图分类号: 

  • R445.3
[1] Kendall BA, Winthrop KL. Update on the epidemiology of pulmonary nontuberculous mycobacterial infections[J]. Semin Respir Crit Care Med, 2013, 34(1): 87-94.
[2] Simons S, van Ingen J, Hsuch PR, et al. Nontuberculous myeobaeteria in respiratory tract infections, eastern Asia[J]. EmergInfeet Dis, 2011, 17(3): 343-349.
[3] 中华医学会结核病分会,《中华结核和呼吸杂志》编辑委员会.非结核分枝杆菌病诊断与治疗专家共识[J]. 中华结核和呼吸杂志, 2012, 35(8): 572-580.
[4] 曹培明,刘奉凤,李桓,等.58例非结核分枝杆菌的临床分析[J].重庆医学, 2014, 43(7): 854-856.
[5] 郭徽.探讨CT在周围型小肺癌的诊断与临床病理分型中的临床价值[J].中国继续医学教育, 2016, 8(21): 48. doi:10.3969/j.issn.1674-9308.2016.21.027.
[6] Liu A, Wang Z, Yang Y, et al. Preoperative diagnosis of malignant pulmonary nodules in lung cancer screening with a radiomics nomogram[J]. Cancer Commun(Lond), 2020, 40(1): 16-24.
[7] 中华医学会结核病学分会.非结核分支杆菌病诊断与处理指南[J].中华结核和呼吸杂志, 2000, 23(11): 650-653.
[8] Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446.
[9] 姚景江,贺亚琼,张亚林.非结核分枝杆菌肺病的临床与MSCT表现[J].中国医学影像技术, 2017, 33(3): 414-418.
[10] 陈露,史河水,李本美,等.非结核分枝杆菌肺病与继发性肺结核的多层螺旋CT征象对比分析[J].临床放射学杂志, 2019, 38(8):1400-1404.
[11] 戴洁,史景云,梁丽,等.非结核分枝杆菌肺病的CT表现与继发性肺结核CT表现比较[J].中国防痨杂志, 2014, 36(8): 706-709.
[12] Liu Y, Kim J, Balagurunathan Y, et al. Radiomic features are associated with EGFR mutation status in lung adenocarcinomas[J]. Clin Lung Cancer, 2016, 17(5): 441-448.
[13] Ganeshan B, Panayiotou E, Burnand K, et al. Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival[J]. Eur Radiol, 2012, 22(4): 796-802.
[14] Gevaert O, Xu J, Hoang CD, et al. Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data - methods and preliminary results[J]. Radiology, 2012, 264(2): 387-396.
[15] Zhang T, Yuan M, Zhong Y, et al. Differentiation of focal organising pneumonia and peripheral adenocarcinoma in solid lung lesions using thin-section CT-based radiomics[J]. Clin Radiol, 2019, 74(1): 78.e23-78.e30. doi: 10.1016/j.crad.2018.08.014.
[16] Wang YL, Gao D, Geng ZJ, et al. Radiomics nomogram analyses for differentiating pneumonia and acute paraquat lung injury[J]. Sci Rep, 2019, 9(1): 15029. doi: 10.1038/s41598-019-50886-7.
[17] Hayashi M, Takayanagi N, Kanauchi T, et al. Prognostic factors of 634 HIV-negative patients with Mycobacterium avium complex lung disease[J]. Am J Respir Crit Care Med, 2012, 185(5): 575-583.
[18] Gochi M, Takayanagi N, Kanauchi T, et al. Retrospective study of the predictors of mortality and radiographic deterioration in 782 patients with nodular/bronchiectatic Mycobacterium avium complex lung disease[J]. BMJ Open, 2015, 5(8): e008058. doi:10.1136/bmjopen-2015- 008058.
[19] Rosenzweig DY. Pulmonary mycobacterial infections due to Mycobacterium intracellulare-avium complex clinical features and course in 100 consecutive cases[J]. Chest, 1979, 75(2): 115-119.
[20] Lam PK, Griffith DE, Aksamit TR, et al. Factors related to response to intermittent treatment of Mycobacterium avium complex lung disease[J]. Am J Respir Crit Care Med, 2006, 173(11): 1283-1289.
[21] Steven AC, Joseph J, Sayed O, et al. Latent class analysis to define radiological subgroups in pulmonary nontuberculous mycobacterial disease[J]. BMC Pulm Med, 2018, 18(1): 145. doi: 10.1186/s12890-018-0675-8.
[22] Wittram C, Weisbrod GL. Mycobacterium avium complex lung disease in immunoompetent patients: radiography-CT correlation[J]. Br J Radiol, 2002, 75(892): 340-344.
[1] 王新,侯莹月,郭泾. 12~15岁青少年不同矢状骨面型上气道形态的差异[J]. 山东大学学报 (医学版), 2022, 60(8): 79-83.
[2] 高琳,于鑫鑫,康冰,张帅,王锡明. CT影像组学对肺纯磨玻璃结节浸润性的预测价值[J]. 山东大学学报 (医学版), 2022, 60(5): 87-97.
[3] 田庆,刘永鹏,张晶晶,刘洪庆. ARIMA乘积季节模型在山东省肺结核发病预测中的应用[J]. 山东大学学报 (医学版), 2021, 59(7): 112-118.
[4] 张倍,张修磊, 巴桑片多,尼玛次仁,石大春,次仁加布,尹亭亭,胡军. 日喀则市2011至2018年肺结核空间流行特征及预测分析[J]. 山东大学学报 (医学版), 2021, 59(2): 108-113.
[5] 刘晓迪,马洁,修璟威,崔庆霞,李望晨,王在翔. 乘积季节模型在我国肺结核疫情预测中的应用[J]. 山东大学学报 (医学版), 2018, 56(9): 71-76.
[6] 李晓非,黄山,欧阳兵,余婷婷,梁桂亮,王霖. 利福平耐药实时荧光定量核酸扩增技术在肺结核临床路径中的应用[J]. 山东大学学报 (医学版), 2018, 56(6): 35-40.
[7] 尹小芳,葛海波. 住院肺结核合并糖尿病患者流行病学特征[J]. 山东大学学报(医学版), 2016, 54(1): 58-61.
[8] 王宝, 赵斌. 左肾上腺血管瘤1例[J]. 山东大学学报(医学版), 2015, 53(9): 95-96.
[9] 李山成, 张磊, 李道堂, 许良, 王飞. 肺癌合并肺结核39例临床分析[J]. 山东大学学报(医学版), 2014, 52(S1): 51-52.
[10] 赵秀秀,徐凌忠,郭振,杨平. 肺结核患者确诊延迟及影响因素分析[J]. 山东大学学报(医学版), 2012, 50(11): 122-125.
[11] 张加胜1,孙强1,边学峰1,2,闫赟1,李文婧1,李仁忠3,陈诚3,张慧3. 耐多药肺结核患者在专科医院治疗后的就医流向及管理现状研究[J]. 山东大学学报(医学版), 2011, 49(2): 125-.
[12] 冯艳,李彩霞,李春海,宁丹. 兔VX2肝癌模型制作及其影像学分析[J]. 山东大学学报(医学版), 2007, 45(2): 199-202.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!