您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2019, Vol. 57 ›› Issue (9): 97-103.doi: 10.6040/j.issn.1671-7554.0.2019.594

• • 上一篇    

足月新生儿大脑皮质时间-空间异质性发育的磁共振弥散张量及弥散峰度

王丽凤1,李峥2,于乔文2   

  1. 1. 山东省妇幼保健院产科, 山东 济南 250014;2.山东大学附属省立医院医学影像科 山东 济南 250021
  • 发布日期:2022-09-27
  • 通讯作者: 于乔文. E-mail:yuqiaowen_sd@126.com
  • 基金资助:
    山东省自然基金青年项目(ZR2016HQ27)

MR-diffusion tensor image and diffusion kurtosis image of spatio-temporal development of new-born cerebral cortex

WANG Lifeng1, LI Zheng2, YÜ Qiaowen2   

  1. 1. Department of Obstetrics, Shandong Maternal and Child Health Hospital, Jinan 250014, Shandong, China;
    2. Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China
  • Published:2022-09-27

摘要: 目的 通过绘制足月新生儿大脑皮质磁共振弥散张量(DTI)与弥散峰度(DKI)参数随孕龄的变化,探讨大脑皮质的时间-空间异质性发育。 方法 获取胎龄为36.6至44.4孕周正常新生儿颅脑的T1加权图像(T1WI)及多球壳弥散数据。并采用皮质骨架(GBSS)算法分别测量并计算额叶、顶叶、枕叶、颞叶皮质的弥散参数,包括各向异性分数(FA)、平均弥散率(MD)、轴向弥散值(AD)、径向弥散值(RD)及平均弥散峰度(MK)等弥散参数值。 结果 40孕周前,大脑皮质的FA及AD值下降,差异均有统计学意义(额叶AD:β=-0.49,P=0.01;顶叶FA:β=-0.48,P=0.02;顶叶AD:β=-0.62,P=0.003;颞叶FA:β=-0.44,P=0.04;颞叶AD:β=-0.5,P=0.01;枕叶FA:β=-0.53,P=0.01;枕叶AD:β=-0.55,P=0.009)。40孕周后大脑皮质的弥散参数差异均无统计学意义(P>0.05);额叶的发育速率快于枕叶(F=9.36,P=0.004);MK值变化观察补充了大脑皮质微结构变化的信息。 结论 新生儿大脑皮质各个脑叶DTI及DKI参数在时间维度、空间维度变化速率的差异性反映了大脑皮质时间-空间异质性发育的规律。

关键词: 新生儿, 大脑皮质, 时间-空间异质性发育, 多球壳弥散图像

Abstract: Objective To explore the spatio-temporal development of newborn cerebral cortex by describing the changes of parameters from diffusion tensor image(DTI)and diffusion kurtosis image(DKI)with newborns with different gestational ages. Methods The T1WI and multiple-shell DWI data of brain of newborn with gestational age ranging from 36.6 to 44.4 weeks were obtained. The diffusion parameters including fractional anisotraphy(FA), mean diffusivity(MD), axial diffusivity(AD), radial diffusivity(RD)and mean kurtosis(MK)were analyzed with GBSS method. Results Dramatic decrease of FA and AD values were detected from cerebral cortex before 40 gestational weeks(frontal lobe AD: β=-0.49, P=0.01; parietal lobe FA: β=-0.48, P=0.02; parietal lobe AD: β=-0.62, P=0.003; temporal lobe FA: β=-0.44, P=0.04; temporal lobe AD: β=-0.5, P=0.01; occipital lobe FA: β=-0.53, P=0.01; occipital lobe AD: β=-0.55, P=0.009), while no significant result was found within any lobe after 40 PCW. The frontal lobe had higher developmental rate than the occipital lobe(F=9.36, P=0.004). The changes of MK values supplemented the information of cerebral cortex microstructure changes. Conclusion The differences among changes of parameters from DTI and DKI data in the time and spatial dimensions reflect the spatio-temporal development of cerebral cortex 山 东 大 学 学 报 (医 学 版)57卷9期 -王丽凤,等.足月新生儿大脑皮质时间-空间异质性发育的磁共振弥散张量及弥散峰度 \=-of newborn.

Key words: Newborn, Cerebral cortex, Spatial-temporal development, Diffusion image of multi-spherical shell

中图分类号: 

  • R742.8
[1] Girardi G. MRI-based methods to detect placental and fetal brain abnormalities in utero[J]. J Repord Ommunol, 2016, 114: 86-91. doi: 10.1016/j.jri.2015.05.008.
[2] Yu Q, Ouyang A, Chalak L, et al. Structural development of human fetal and preterm brain cortical plate based on population-averaged templates[J]. Cerebral Cortex, 2016, 26(11): 4381-4391.
[3] Neto Henriques R, Correia MM, Nunes RG, et al. Exploring the 3D geometry of the diffusion kurtosis tensor—impact on the development of robust tractography procedures and novel biomarkers[J]. Neuroimage, 2015, 111: 85-99. doi: 10.1016/j.neuroimage.
[4] Guerreri M, Palombo M, Caporale A, et al. Age-related microstructural and physiological changes in normal measured by MRI by MRI MRI by MRI MRI by MRI procedures and novel biomarkers[J]. Neuroimage, 2019, 188: 654-667. doi: 10.1016/j.neuroimage.
[5] Sours C, Raghavan P, Medina AE, et al. Structural and functional integrity of the intraparietal sulcus in moderate and severe traumatic brain injury[J]. J Neurotrauma, 2017, 13(7): 1473-1481.
[6] Adisetiyo V, Tabesh A, Di Martino A, et al. Attention-deficit/hyperactivity disorder without comorbidity is associated with distinct atypical patterns of cerebral microstructural development[J]. Hum Brain Mapp, 2014, 35(5): 2148-2162.
[7] Kochunov P, Rowland LM, Fieremans E, et al. Diffusion-weighted imaging uncovers likely sources of processing-speed deficits in schizophrenia[J]. PNAS, 2016, 113(47): 13504-13509.
[8] Zhang J, Chen X, Chen D, et al. Grading and proliferation assessment of diffuse astrocytic tumors with monoexponential, biexponential, and strectched-exponential diffusion-weighted imaging and diffusion kurtosis imaging[J]. Eur J Radiol, 2018, 109: 188-195. doi: 10. 1016/ j.ejrad. 2018. 11.003.
[9] Vanhoutte G, Pereson S, Delgado Y Palacios R, et al. Diffusion kurtosis imaging to detect amyloidosis in an APP/PS1 mouse model for Alzhermers disease[J]. Magn Reson Med, 2013, 69(4): 1115-1121.
[10] Shi J, Chang L, Wang J. et al. Initial application of diffusion kurtosis imaging in evaluating brain development of healthy preterm infants[J]. PLoS One, 2016, 11(4): e0154146.
[11] Bouyssi-Lobar M, Brossard-Rocine M, Jacobs M, et al. Regional microstructural organization of the cerebral cortex is addercted by preterm birth[J]. Neuroimage Clin, 2018, 18: 871-880. doi:10.1016/j.nicl.2018.03.020.
[12] Pavlidis E, Lioyd RO, Boylan GB. EEG-a valuable biomarker of brain injury in perterm infants[J]. Dev Neurosci, 2017, 39(1-4): 23-35.
[13] Leung MP, Thompson B, Black J, et al. The effects of preterm birth on visual development[J]. Clin Exp Optom, 2018, 101(1): 4-12.
[14] Kim ST, Kim H, Kim HH, et al. A rare case of lethal prenatal-onset infantile cortical hyperostosis[J]. Yonsei Med J, 2019, 60(5): 484-486.
[15] Tataranno ML, Perrone S, Longini M, et al. Predictive role of urinary metabolic profile for abnormal MRI score in preterm neonates[J]. Dis Markers, 2018, 2018:4938194. doi:10.1155/2018/4938194.
[16] Jin C, Li Y, Wang M, et al. Proper timing for the evaluation of neonatal brain white matter development: a diffusion tensor imaging study[J]. European Radiology, 2018, 29(3): 1527-1537.
[17] Baldoli C, Scola E, Della Rosa PA, et al. Maturation of preterm newborn brains: a fMRI-DTI study of auditory processing of linguistic stimuli and white matter development[J]. Brain StructFunct, 2015, 220(6): 3733-3751.
[18] Ouyang M, Jeon T, Sotiras A, et al. Differential cortical microstructural maturation in the preterm human brain with diffusion kurtosis and tensor imaging[J]. Proc Natl Acad Sci USA, 2019, 19:.doi:10.1073/pnas.1812156116.
[19] 张冉, 肖新兰. 局灶性皮质发育不良的MR解剖与功能成像研究进展[J]. 临床放射学杂志, 2018, 336(7): 165-168.
[20] Urbain C, Sato J, Hammill C, et al. Converging function, structure, and behavioural features of emotion regulation in very preterm children[J]. Hum Brain Mapp, 2019, 40(11):3385-3397.
[21] Ball G, Srinivasan L, Aljabar P, et al. Development of cortical microstructure in the preterm human brain[J]. PNAS, 2013, 110(23): 9541-9546.
[22] Grinberg F, Maximov II, Farrher E, et al. Diffusion kurtosis metrics as biomarkers of microstructural development: A comparative study of a group of children and a group of adults[J]. Neuroimage, 2017, 144(Pt A): 12-22.
[23] Mckinstry RC, Mathur A, Miller JH, et al. Radial organization of developing preterm human cerebral cortex revealed by non-invasive water diffusion anisotropy MRI[J]. Cerebral Cortex, 2002, 12(12): 1237-1243.
[24] Melbourne A, Eaton-Rosen Z, Orasanu E, et al. Longitudinal development in the preterm thalamus and posterior white matter: MRI correlations between diffusion weighted imaging and T2 relaxometry[J]. Hum Brain Mapp, 2016, 37(7): 2479-2492.
[25] Dubois J, Dehaene-Lambertz G, Kulikova S, et al. The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants[J]. Neuroscience, 2014, 276: 48-71. doi: 10.1016 /j.neurosci ence. 2013.12.044.
[26] Sur M, Cowey A. Cerebral cortex: function and development[J]. Neuron, 1995, 15(3): 497-505.
[1] 张道来 孙涛 谢珊珊 王玉卓 赵玲 冯玉新 辛华. 体外原代培养胎鼠大脑皮层神经元NMDAR1亚基表达的发育性变化[J]. 山东大学学报(医学版), 2209, 47(6): 28-32.
[2] 刘晓,郭新元,张德健,李琦,李宁,薛江. 床旁肺脏超声及评分对70例新生儿呼吸窘迫综合征的诊治效果[J]. 山东大学学报 (医学版), 2021, 59(7): 50-56.
[3] 刘艳艳,付振美,于乔文,隋毅,陈金鸽,高洁, 林祥涛,王锡明,侯中煜. 新生儿大脑纤维束观察值及其对侧化的影响[J]. 山东大学学报 (医学版), 2021, 59(10): 94-100.
[4] 于娜,郭情情,孙梅,盛燕,马增香,秦莹莹. 甲状腺癌术后行IVF/ICSI-ET助孕临床结局[J]. 山东大学学报 (医学版), 2018, 56(9): 54-58.
[5] 袁鹏,李娅,张飞雪,王青. 肺脏超声在新生儿感染性肺炎诊断中的临床价值[J]. 山东大学学报 (医学版), 2018, 56(6): 29-34.
[6] 陈栋,李晓莺,马静,王云峰,张文. 电子支气管镜在新生儿呼吸困难诊疗中的应用[J]. 山东大学学报(医学版), 2016, 54(8): 84-87.
[7] 洪海洁,孙文娟,张媛,徐永萍. 足月选择性剖宫产分娩新生儿不良结局的影响因素[J]. 山东大学学报(医学版), 2016, 54(5): 56-61.
[8] 臧丽娇,仇杰,庄根苗,安丽. 血清S100B蛋白、神经元特异性烯醇化酶与新生儿低血糖脑损伤的相关性[J]. 山东大学学报(医学版), 2016, 54(4): 51-54.
[9] 朱静,郭爱丽,张楠,秦明明,刘立娟,朱薇薇. 促红细胞生成素治疗新生儿缺氧缺血性脑病的疗效观察[J]. 山东大学学报(医学版), 2016, 54(4): 60-63.
[10] 庄根苗,唐玲,臧丽娇,安丽. 新生儿缺氧缺血性脑病中血清前白蛋白水平与新生儿行为神经测定的相关性[J]. 山东大学学报(医学版), 2016, 54(12): 37-40.
[11] 高南南, 陈栋, 于永慧, 张丽丽. 血清生物学标志物在新生儿坏死性小肠结肠炎手术评估中的价值[J]. 山东大学学报(医学版), 2015, 53(6): 73-76.
[12] 和振芬. 提高新生儿采血标本成功率和质量的方法探讨[J]. 山东大学学报(医学版), 2014, 52(Z1): 146-146.
[13] 刘剑敏. 茵栀黄注射液灌肠联合培菲康口服治疗新生儿黄疸的疗效观察[J]. 山东大学学报(医学版), 2014, 52(S1): 57-58.
[14] 芦红伟. 新生儿低钠血症50例临床观察[J]. 山东大学学报(医学版), 2014, 52(S1): 63-64.
[15] 包菊, 曲元, 王东信. 生物节律对分娩镇痛孕妇分娩方式的影响[J]. 山东大学学报(医学版), 2014, 52(7): 75-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!