您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2018, Vol. 56 ›› Issue (12): 47-54.doi: 10.6040/j.issn.1671-7554.0.2018.049

• • 上一篇    

核转运蛋白α2在胶质瘤中的表达及对其生物学行为的影响

李杰,何东,张睿,杨帆,冯少滨,杨依航,辛涛   

  1. 山东大学附属省立医院神经外科, 山东 济南 250021
  • 发布日期:2022-09-27
  • 通讯作者: 辛涛. E-mail:drxintao@126.com
  • 基金资助:
    山东省自然科学基金(ZR2016HM59);济南市科技计划(201602162)

Expression of karyopherin α2 and its effect on the biological behaviors of glioma

LI Jie, HE Dong, ZHANG Rui, YANG Fan, FENG Shaobin, YANG Yihang, XIN Tao   

  1. Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China
  • Published:2022-09-27

摘要: 目的 探讨核转运蛋白α2(KPNA2)在胶质瘤中的表达与临床意义以及KPNA2对胶质瘤细胞生物学活性的影响。 方法 收集脑星形胶质细胞瘤Ⅱ、Ⅲ、Ⅳ级各30例,癌周相对正常脑组织15例,qRT-PCR及免疫组化分析KPNA2的表达;制备KPNA2干扰质粒,并以慢病毒为载体转染进入胶质瘤细胞系U87、U251,CCK8、EdU法检测KPNA2敲除后对细胞增殖的影响,Transwell小室法检测KPNA2对胶质瘤细胞迁移和侵袭的影响。 结果 KPAN2在胶质瘤中表达升高,表达量与胶质瘤WHO分级呈正相关(rs=0.559, P<0.001),与患者预后呈负相关(总生存率: χ2=21.39, P<0.001;无进展生存率: χ2=8.057, P=0.004)。KPNA2敲除后胶质瘤细胞系的增殖、迁移和侵袭能力均明显减弱。 结论 KPNA2在胶质瘤的发生发展中具有重要作用,可能成为新的临床诊治的标记物和治疗靶点。

关键词: 核转运蛋白α2, 胶质瘤, 临床病理特征, 预后, 细胞增殖

Abstract: Objective To explore the clinical significance and biological effects of karyopherin α2(KPNA2)on glioma. Methods A total of 90 specimens of cerebral astrocytoma were collected, including WHO grades Ⅱ, Ⅲ and Ⅳ(30 cases for each grade), and 15 normal peritumoral tissues served as controls. The expression of KPNA2 was detected with qRT-PCR and immunohistochemistry. After that, the lentiviruses expressing small hairpin RNAs(shRNAs)of KPNA2 were introduced into the U87 and U251 glioma cells. The effects of KPNA2-knockdown on the proliferation of glioma cells were detected with CCK8 and EdU, and the effects on the cell migration and invasion were assessed with Transwell assay. Results KPAN2 was overexpressed in glioma tissues, and high level of KPNA2 was positively correlated with the WHO classification of glioma(rs=0.559, P<0.001)and negatively correlated with the prognosis of patients(overall survival: χ2=21.39, P<0.001; relapse-free survival: χ2=8.057, P=0.004). In addition, KPNA2-knockdown significantly weakened the proliferation, migration and invasion of glioma cell lines U87 and U251. Conclusion KPNA2 plays an important role in the tumorigenesis and development of glioma and may serve as a novel biomarker or therapeutic target for clinical diagnosis and treatment.

Key words: Karyopherin α2, Glioma, Clinicopathologic features, Prognosis, Cell proliferation

中图分类号: 

  • R574
[1] Louis DN, Perry A, Reifenberger G, et al. The 2016 world health organization classification of tumors of the central nervous system: a summary[J]. Acta Neuropathol, 2016, 131(6): 803-820.
[2] Wang Y, Jiang T. Understanding high grade glioma: molecular mechanism, therapy and comprehensive management[J]. Cancer Lett, 2013, 331(2): 139-146.
[3] Louis DN, Pomeroy SL, Cairncross JG. Focus on central nervous system neoplasia[J]. Cancer Cell, 2002, 1(2): 125-128.
[4] 杜少静, 贺慧颖. 核转运蛋白KPNA2与肿瘤关系的研究进展[J]. 中国肿瘤临床, 2016, 43(17): 780-784. DU Shaojing, HE Huiying. Research progress on the relationship between KPNA2 and tumors[J]. Chinese Journal of Clinical Oncology, 2016, 43(17): 780-784.
[5] Tan S, Ding K, Li R, et al. Identification of miR-26 as a key mediator of estrogen stimulated cell proliferation by targeting CHD1, GREB1 and KPNA2[J]. Breast Cancer Res, 2014, 16(2): R40. doi: 10.1186/bcr3644.
[6] Mortezavi A, Hermanns T, Seifert HH, et al. KPNA2 expression is an independent adverse predictor of biochemical recurrence after radical prostatectomy[J]. Clin Cancer Res, 2011, 17(5): 1111-1121.
[7] Huang L, Wang HY, Li JD, et al. KPNA2 promotes cell proliferation and tumorigenicity in epithelial ovarian carcinoma through upregulation of c-Myc and downregulation of FOXO3a[J]. Cell Death Dis, 2013, 4: e745. doi: 10.1038/cddis.2013.256.
[8] Hu ZY, Yuan SX, Yang Y, et al. Pleomorphic adenoma gene 1 mediates the role of karyopherin alpha 2 and has prognostic significance in hepatocellular carcinoma[J]. J Exp Clin Cancer Res, 2014, 33(1): 61. doi: 10.1186/s13046-014-0061-1.
[9] 史本涛, 苏博兴, 方冬, 等. RNAi沉默KPNA2对人膀胱癌细胞系5637转移潜能的影响[J]. 中华肿瘤防治杂志, 2015, 22(11): 832-835. SHI Bentao, SU Boxing, FANG Dong, et al. effects of KPNA2 small interfering RNA on migration and invasion of human bladder cancer cell lines 5637[J]. Chinese Journal of Cancer Prevention and Treatment, 2015, 22(11): 832-835.
[10] Fuller GN, Scheithauer BW. The 2007 revised world health organization(WHO)classification of tumours of the central nervous system: newly codified entities[J]. Brain Pathol, 2010, 17(3): 304-307.
[11] Stewart M. Molecular mechanism of the nuclear protein import cycle[J]. Nat Rev Mol Cell Biol, 2007, 8(3): 195-208.
[12] Goldfarb DS, Corbett AH, Mason DA, et al. Importin alpha: a multipurpose nuclear-transport receptor[J]. Trends Cell Biol, 2004, 14(9): 505-514.
[13] Radu A, Blobel G, Moore MS. Identification of a protein complex that is required for nuclear protein import and mediates docking of import substrate to distinct nucleoporins[J]. Proc Natl Acad Sci USA, 1995, 92(5): 1769-1773.
[14] Görlich D, Henklein P, Laskey RA, et al. A 41 amino acid motif in importin-alpha confers binding to importin-beta and hence transit into the nucleus[J]. EMBO J, 1996, 15(8): 1810-1817.
[15] Weis K, Mattaj IW, Lamond AI. Identification of hSRP1 alpha as a functional receptor for nuclear localization sequences[J]. Science, 1995, 268(5213): 1049-1053.
[16] Weis K, Ryder U, Lamond AI. The conserved amino-terminal domain of hSRP1 alpha is essential for nuclear protein import[J]. Embo J, 1996, 15(8): 1818.
[17] Pj VDW, Chi A, Stelma T, et al. Targeting the nuclear import receptor, Kpnβ1 as an anti-cancer therapeutic[J]. Mol Cancer Ther, 2016, 15(4): 560-573.
[18] Yang J, Lu C, Wei J, et al. Inhibition of KPNA4 attenuates prostate cancer metastasis[J]. Oncogene, 2017, 36(20): 2868-2878.
[19] Shigeyasu K, Okugawa Y, Toden S, et al. Exportin-5 functions as an oncogene and a potential therapeutic target in colorectal cancer[J]. Clin Cancer Res, 2016, 23(5): 1312-1322.
[20] Jensen JB, Munksgaard PP, Sørensen CM, et al. High expression of karyopherin-α2 defines poor prognosis in non-muscle-invasive bladder cancer and in patients with invasive bladder cancer undergoing radical cystectomy[J]. Eur Urol, 2011, 59(5): 841-848.
[21] Dankof A, Fritzsche FR, Dahl E, et al. KPNA2 protein expression in invasive breast carcinoma and matched peritumoral ductal carcinoma in situ[J]. Virchows Arch, 2007, 451(5): 877-881.
[22] Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646.
[23] Christiansen A, Dyrskjøt L. The functional role of the novel biomarker karyopherin α 2(KPNA2)in cancer[J]. Cancer Lett, 2013, 331(1): 18-23.
[24] Grupp K, Boumesli R, Tsourlakis MC, et al. The prognostic impact of high Nijmegen breakage syndrome(NBS1)gene expression in ERG-negative prostate cancers lacking PTEN deletion is driven by KPNA2 expression[J]. Int J Cancer, 2014, 135(6): 1399-1407.
[25] Tseng SF, Chang CY, Wu KJ, et al. Importin KPNA2 is required for proper nuclear localization and multiple functions of NBS1[J]. J Biol Chem, 2005, 280(47): 39594-39600.
[26] Thakur S, Zhang HB, Peng Y, et al. Localization of BRCA1 and a splice variant identifies the nuclear localization signal[J]. Mol Cell Biol, 1997, 17(1):444-452.
[27] Umegaki N, Tamai K, Nakano H, et al. Differential regulation of karyopherin alpha 2 expression by TGF-beta1 and IFN-gamma in normal human epidermal keratinocytes: evident contribution of KPNA2 for nuclear translocation of IRF-1[J]. J Invest Dermatol, 2007, 127(6): 1456-1464.
[28] Ly-Huynh JD, Lieu KG, Major AT, et al. Importin alpha2-interacting proteins with nuclear roles during mammalian spermatogenesis[J]. Biol Reprod, 2011, 85(6): 1191-1202.
[29] Zhang C, Kallakury BV, Ross JS, et al. The significance of TNFAIP8 in prostate cancer response to radiation and docetaxel and disease recurrence[J]. Int J Cancer, 2013, 133(1): 31-42.
[30] Tan S, Ding K, Li R, et al. Identification of miR-26 as a key mediator of estrogen stimulated cell proliferation by targeting CHD1, GREB1 and KPNA2[J]. Breast Cancer Res, 2014, 16(2): R40. doi: 10.1186/bcr3644.
[31] Lu Y, Xiao L, Liu Y, et al. MIR517C inhibits autophagy and the epithelial-to-mesenchymal(-like)transition phenotype in human glioblastoma through KPNA2-dependent disruption of TP53 nuclear translocation[J]. Autophagy, 2015, 11(12): 2213-2232.
[32] Dang CV. MYC on the Path to Cancer[J]. Cell, 2012, 149(1): 22.
[33] Denechaud PD, Fajas L, Giralt A. E2F1, a novel regulator of metabolism[J]. Front Endocrinol(Lausanne), 2017,8:311. doi: 10.3389/fendo.2017.00311.
[1] 王琳琳 孙美丽 孙玉萍 张楠 刘传勇. 中心体α-微管蛋白、γ-微管蛋白在脑胶质瘤中的表达及其与Survivin表达的相关性研究[J]. 山东大学学报(医学版), 2209, 47(6): 103-.
[2] 赵舸,邹存华,宋冬冬,赵淑萍. 丹参酮IIA对子宫内膜癌细胞增殖与凋亡的影响[J]. 山东大学学报 (医学版), 2022, 60(9): 53-58.
[3] 郑苏,陈述花,李华,邓劼,陈春红,王晓慧,冯卫星,韩萧迪,张雨佳,李娜,李莫,方方. 脑电变化和BASED评分与54例婴儿痉挛症促肾上腺皮质激素疗效的相关性[J]. 山东大学学报 (医学版), 2022, 60(9): 91-96.
[4] 王丽慧,高敏,孔北华. 子宫血管肉瘤2例报告并文献复习[J]. 山东大学学报 (医学版), 2022, 60(9): 108-112.
[5] 高中霞,张铭,樊明德,谭晨阳,王梦迪,王超,樊跃飞,丁守銮,王成伟. 伽玛刀治疗81例肺癌脑转移瘤的疗效及预后因素[J]. 山东大学学报 (医学版), 2022, 60(8): 44-49.
[6] 贺士卿,李皖皖,董书晴,牟婧怡,刘宇莹,魏思雨,刘钊,张家新. 基于数据库构建乳腺癌焦亡相关基因的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(8): 34-43.
[7] 张玉凤,徐敏,邢秀丽,逄曙光,户克庆. 689例非ST段抬高型心肌梗死患者的临床流行病学特征[J]. 山东大学学报 (医学版), 2022, 60(7): 118-122.
[8] 李琳琳,王凯. 基于生物信息学预测肝细胞癌预后基因[J]. 山东大学学报 (医学版), 2022, 60(5): 50-58.
[9] 郑昊天,王光辉,赵小刚,王亚东,曾榆凯,杜贾军. 基于数据库LKB1突变肺腺癌DNA异常甲基化位点构建的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(3): 51-58.
[10] 陈立晓,英信江,陈歆维,王菲,孙臻峰,董频. 下咽鳞癌蛋白质谱鉴定及预后靶分子筛选[J]. 山东大学学报 (医学版), 2021, 59(9): 140-147.
[11] 孙庆杰,张怡莎,管尚慧,凤志慧. 丙戊酸对134例放疗神经胶质瘤患者预后生存和肿瘤复发的影响[J]. 山东大学学报 (医学版), 2021, 59(8): 80-85.
[12] 褚晏,刘端瑞,朱文帅,樊荣,马晓丽,汪运山,郏雁飞. DNA甲基化转移酶在胃癌中的表达及其临床意义[J]. 山东大学学报 (医学版), 2021, 59(7): 1-9.
[13] 陈丽宇,肖娟,吕仙忠,段宝敏,洪凡真. 影响孕产妇下肢深静脉血栓预后的危险因素分析[J]. 山东大学学报 (医学版), 2021, 59(7): 38-42.
[14] 田瑶天,王宝,李叶琴,王滕,田力文,韩波,王翠艳. 基于可解释性心脏磁共振参数的机器学习模型预测儿童心肌炎的预后[J]. 山东大学学报 (医学版), 2021, 59(7): 43-49.
[15] 李皖皖,周文凯,董书晴,贺士卿,刘钊,张家新,刘斌. 利用数据库信息构建乳腺癌免疫关联lncRNAs风险评估模型[J]. 山东大学学报 (医学版), 2021, 59(7): 74-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!