您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2017, Vol. 55 ›› Issue (1): 69-74.doi: 10.6040/j.issn.1671-7554.0.2016.1313

• 临床医学 • 上一篇    下一篇

microRNA-183在PCOS胰岛素抵抗中的表达及其临床意义

李婧博,刘洪彬,贾月月,王泽,孙梅,石玉华   

  1. 山东大学附属生殖医院 国家辅助生殖与优生工程技术研究中心 生殖内分泌教育部重点实验室(山东大学)山东省生殖医学重点实验室, 山东 济南 250001
  • 收稿日期:2016-10-14 出版日期:2017-01-10 发布日期:2017-01-10
  • 通讯作者: 石玉华. E-mail:shiyuhua2003@126.com E-mail:shiyuhua2003@126.com
  • 基金资助:
    国家科技支撑计划(2012BAI32B04);国家自然科学基金面上项目(81471428,81200423);山东省科技发展计划(2014GSF118070);山东省人口和计划生育委员会科技计划(2013-03);山东大学青年学者未来计划(第二批,2016WLJH50);山东大学附属生殖医院自主创新项目(20141102,20141103)

Expression and clinical significance of microRNA-183 in polycystic ovary syndrome with insulin resistance

LI Jingbo, LIU Hongbin, JIA Yueyue, WANG Ze, SUN Mei, SHI Yuhua   

  1. Center for Reproductive Medicine, Shandong University;
    National Research Center for Assisted Reproductive Technology and Reproductive Genetics;
    Key Laboratory for Reproductive Endocrinology(Shandong University), Ministry of Education;
    Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan 250001, Shandong, China
  • Received:2016-10-14 Online:2017-01-10 Published:2017-01-10

摘要: 目的 检测多囊卵巢综合征(PCOS)胰岛素抵抗患者卵巢颗粒细胞中microRNA-183(miR-183)的表达,并评价其临床意义。 方法 采用实时荧光定量逆转录聚合酶链反应(qRT-PCR)检测120例PCOS患者[其中 78例PCOS胰岛素抵抗患者(PCOS胰岛素抵抗组)和42例PCOS非胰岛素抵抗患者(PCOS非胰岛素抵抗组)及72例正常对照者(正常对照组)]颗粒细胞中miR-183的表达,并对miR-183表达和胰岛素抵抗指数(HOMA-IR)进行关联分析,同时对组间临床资料进行回顾性分析。采用受试者工作特征(ROC)曲线评价miR-183的诊断效能。 结果 miR-183在PCOS胰岛素抵抗组颗粒细胞中的表达高于正常对照组(P<0.001)及非胰岛素抵抗组(P=0.034),PCOS胰岛素抵抗组miR-183的表达与HOMA-IR呈正相关(r=0.476, P=0.003),ROC曲线提示miR-183联合体质量指数(BMI)作为PCOS胰岛素抵抗的评价指标,其诊断效能较高(AUC: 0.820, 95%CI: 0.750~0.889, P<0.001)。 结论 miR-183在PCOS胰岛素抵抗患者颗粒细胞中高表达,并与HOMA-IR相关,其可能通过卵泡局部微环境参与调控PCOS胰岛素抵抗的致病过程。

关键词: 多囊卵巢综合征, 胰岛素抵抗, miR-183, 颗粒细胞

Abstract: Objective To explore the expression of microRNA-183(miR-183)in the ovarian granulosa cells of polycystic ovary syndrome(PCOS)patients with insulin resistance(IR), and to evaluate its clinical significance. Methods A total of 120 PCOS patients including 78 with insulin resistance and 42 without, and 72 healthy controls were enrolled. The miR-183 expression was examined by real-time quantitative reverse transcription PCR(qRT-PCR). The correlation between miR-183 and homeostasis model assessment-insulin resistance(HOMA-IR)was analyzed. The area under the receiver operating characteristic(ROC)curve(AUC)was calculated to evaluate the predictive power of miR-183 for PCOS insulin resistance. Results PCOS patients with insulin resistance had higher miR-183 expression than the control group(P<0.001)and PCOS without insulin resistance group(P=0.034). There was positive correlation 山 东 大 学 学 报 (医 学 版)55卷1期 -李婧博,等.microRNA-183在PCOS胰岛素抵抗中的表达及其临床意义 \=-between HOMA-IR and miR-183 expression in PCOS with insulin resistance group(r=0.476, P=0.003). The ROC analysis suggested that combination of miR-183 and body mass index(BMI)(AUC: 0.820, 95%CI: 0.750-0.889, P<0.001)might be an effective indicator. Conclusion The high expression of miR-183 is correlated to insulin resistance of PCOS and HOMA-IR, and may be involved in the pathogenesis of PCOS insulin resistance through follicular microenvironment.

Key words: MicroRNA-183, Insulin resistance, Granulosa cell, Polycystic ovary syndrome

中图分类号: 

  • R711.75
[1] Pertynska-Marczewska M, Diamanti-Kandarakis E, Zhang J, et al. Advanced glycation end products: a link between metabolic and endothelial dysfunction in polycystic ovary syndrome?[J]. Metabolism, 2015, 64(11): 1564-1573.
[2] Polak K, Czyzyk A, Simoncini T, et al. New markers of insulin resistance in polycystic ovary syndrome[J]. J Endocrinol Invest, 2016, 10. 1007/s40618-016-0523-8
[3] Ciaraldi TP, Aroda V, Mudaliar S, et al. Polycystic ovary syndrome is associated with tissue-specific differences in insulin resistance[J]. J Clin Endocrinol Metab, 2009, 94(1): 157-163.
[4] 李晏丽, 宁光. microRNA与胰岛素抵抗[J]. 国际内分泌代谢杂志, 2014, 34(3): 188-190. LI Yanli, NING Guang. Relationship between microRNA and insulin resistance[J]. International Journal of Endocrinology and Metabolism, 2014, 34(3): 188-190.
[5] Gebremedhn S, Salilew-Wondim D, Hoelker M, et al. MicroRNA-183~96~182 cluster regulate bovine granulosa cell proliferation and cell cycle transition by coordinately targeting FOXO1[J]. Biol Reprod, 2016, 94(6): 127.
[6] Motino O, Frances DE, Mayoral R, et al. Regulation of microRNA 183 by cyclooxygenase 2 in liver is DEAD-Box helicase p68(DDX5)dependent: role in insulin signaling[J]. Mol Cell Biol, 2015, 35(14): 2554-2567.
[7] Kaur S, Archer KJ, Devi MG, et al. Differential gene expression in granulosa cells from polycystic ovary syndrome patients with and without insulin resistance: identification of susceptibility gene sets through network analysis[J]. J Clin Endocrinol Metab, 2012, 97(10): E2016-2021.
[8] Rotterdam ESHRE/AS RM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome[J]. Fertil Steril, 2004, 81(1): 19-25.
[9] Matsubara H, Ikuta K, Ozaki Y, et al. Gonadotropins and cytokines affect luteal function through control of apoptosis in human luteinized granulosa cells[J]. J Clin Endocrinol Metab, 2000, 85(4): 1620-1626.
[10] Ovalle F, Azziz R. Insulin resistance, polycystic ovary syndrome, and type 2 diabetes mellitus[J]. Fertil Steril, 2002, 77(6): 1095-1105.
[11] Shi Y, Cui Y, Sun X, et al. Hypertension in women with polycystic ovary syndrome: prevalence and associated cardiovascular risk factors[J]. Eur J Obstet Gynecol Reprod Biol, 2014, 173: 66-70.
[12] Orio F, Vuolo L, Palomba S, et al. Metabolic and cardiovascular consequences of polycystic ovary syndrome[J]. Minerva Ginecol, 2008, 60(1): 39-51.
[13] Xu X, Zhao H, Shi Y, et al. Family association study between INSR gene polymorphisms and PCOS in Han Chinese[J]. Reprod Biol Endocrinol, 2011, 9: 76.
[14] 张文娟, 吴兴国, 丁明德, 等. 脂联素基因多态性与多囊卵巢综合征发病关系的病例对照研究[J]. 中华妇产科杂志, 2015, 50(11): 825-829. ZHANG Wenjuan, WU Xingguo, DING Mingde, et al. Case-control based study between polymorphisms in the adiponectin gene and polycystic ovary syndrome[J]. Chinese Journal of Obstetrics and Gynecology, 2015, 50(11): 825-829.
[15] Hackbart KS, Cunha PM, Meyer RK, et al. Effect of glucocorticoid-induced insulin resistance on follicle development and ovulation[J]. Biol Reprod, 2013, 88(6): 153.
[16] Turner N, Robker RL. Developmental programming of obesity and insulin resistance: does mitochondrial dysfunction in oocytes play a role?[J]. Mol Hum Reprod, 2015, 21(1): 23-30.
[17] Flynt AS, Lai EC. Biological principles of microRNA-mediated regulation: shared themes amid diversity[J]. Nat Rev Genet, 2008, 9(11): 831-842.
[18] Imbar T, Eisenberg I. Regulatory role of microRNAs in ovarian function[J]. Fertil Steril, 2014, 101(6): 1524-1530.
[19] Pierce ML, Weston MD, Fritzsch B, et al. MicroRNA-183 family conservation and ciliated neurosensory organ expression[J]. Evol Dev, 2008, 10(1): 106-113.
[20] Chen H, Zhang L, Zhang L, et al. MicroRNA-183 correlates cancer prognosis, regulates cancer proliferation and bufalin sensitivity in epithelial ovarian caner[J]. Am J Transl Res, 2016, 8(4): 1748-1755.
[21] Baran-Gale J, Fannin EE, Kurtz CL, et al. Beta cell 5'-shifted isomiRs are candidate regulatory hubs in type 2 diabetes[J]. PLoS One, 2013, 8(9): e73240.
[22] Jeon TI, Esquejo RM, Roqueta-Rivera M, et al. An SREBP-responsive microRNA operon contributes to a regulatory loop for intracellular lipid homeostasis[J]. Cell Metab, 2013, 18(1): 51-61.
[23] Xu J, Wong C. A computational screen for mouse signaling pathways targeted by microRNA clusters[J]. RNA, 2008, 14(7): 1276-1283.
[24] Ding L, Gao F, Zhang M, et al. Higher PDCD4 expression is associated with obesity, insulin resistance, lipid metabolism disorders, and granulosa cell apoptosis in polycystic ovary syndrome[J]. Fertil Steril, 2016, 105(5): 1330-1337
[25] Makker A, Goel MM, Mahdi AA. PI3K/PTEN/Akt and TSC/mTOR signaling pathways, ovarian dysfunction, and infertility: an update[J]. J Mol Endocrinol, 2014, 53(3): R103-118.
[26] Hannenhalli S, Kaestner KH. The evolution of Fox genes and their role in development and disease[J]. Nat Rev Genet, 2009, 10(4): 233-240.
[1] 张媛 李英敏 冯月秋 常彩云 潘华伟 王束玫. 血清脂联素水平与肥胖、胰岛素抵抗的关系探讨[J]. 山东大学学报(医学版), 2209, 47(6): 124-.
[2] 丁祥云,于清梅,张文芳,庄园,郝晶. 胰岛素样生长因子II在84例多囊卵巢综合征患者颗粒细胞中的表达和促排卵结局的相关性[J]. 山东大学学报 (医学版), 2020, 1(7): 60-66.
[3] 王玉红,张丽红,王林省,陈月芹,王彦辉,王皆欢,李传福. 消化道颗粒细胞瘤的影像学表现[J]. 山东大学学报(医学版), 2017, 55(8): 66-70.
[4] 张素萍,王泽,周亚丽, 李敬,路西兰,柏宏伟,石玉华. 来曲唑治疗不同体质量指数多囊卵巢综合征患者的临床效果[J]. 山东大学学报(医学版), 2017, 55(5): 81-85.
[5] 李健,徐冰,闫新峰,徐万菊,常晓天. 筛选TXNDC5与胰岛素相关信号通路关键基因的探讨[J]. 山东大学学报(医学版), 2017, 55(3): 88-93.
[6] 李洪志,申永超,刘洁婷,赵孝金,初彦辉,袁晓环. 11β-HSD1抑制剂改善db/db小鼠胰岛素敏感性的实验研究[J]. 山东大学学报(医学版), 2017, 55(10): 59-64.
[7] 杨冬梓,麦卓瑶. 高龄多囊卵巢综合征患者的卵巢储备特点及其助孕结局[J]. 山东大学学报(医学版), 2017, 55(1): 26-32.
[8] 贾月月,刘洪彬,李婧博,李敬,张江涛, 孙梅,石玉华. 多囊卵巢综合征患者颗粒细胞microRNA-200b的表达及影响[J]. 山东大学学报(医学版), 2017, 55(1): 63-68.
[9] 张琳,李敬,王泽,张江涛,马增香,石玉华. 多囊卵巢综合征患者促甲状腺激素对血糖、血脂的影响[J]. 山东大学学报(医学版), 2017, 55(1): 80-84.
[10] 林栋,管庆波. 2型糖尿病男性患者血清睾酮水平低下对非酒精性脂肪肝的影响[J]. 山东大学学报(医学版), 2016, 54(7): 33-37.
[11] 马会明,张永芳,王蒙蒙,李昕,王永峰,田洪成,胡蓉,王燕蓉,裴秀英,徐仙. 雌激素对卵巢颗粒细胞雌激素受体-β和转录因子叉头蛋白3表达的影响[J]. 山东大学学报(医学版), 2016, 54(5): 50-55.
[12] 许艺博,季晓康,李向一,申振伟,薛付忠. 尿液pH与代谢综合征的相关性[J]. 山东大学学报(医学版), 2016, 54(12): 82-85.
[13] 姜芳洁, 邵珊珊, 景斐, 于春晓, 赵家军. 高胆固醇饮食对大鼠脂源性脂肪因子的影响[J]. 山东大学学报(医学版), 2015, 53(11): 1-5.
[14] 韩文洁1,于苏国1,崔翔宇2. N-乙酰半胱氨酸对胰岛素抵抗大鼠GLP-1、IL-6表达的影响[J]. 山东大学学报(医学版), 2014, 52(6): 12-16.
[15] 王川1,侯新国1,梁凯1,闫飞1,杨俊鹏1,王令舒1,田萌1,李成乔2,张秀萍3,杨位芳4,马泽强5,陈丽1. HDL-C和TG/HDL-C比值对山东省中老年回族人胰岛素抵抗的预测价值[J]. 山东大学学报(医学版), 2014, 52(5): 73-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!