Journal of Shandong University (Health Sciences) ›› 2025, Vol. 63 ›› Issue (9): 31-39.doi: 10.6040/j.issn.1671-7554.0.2024.1401
• Special Issue on “Big DataEnabled, AI Foundation ModelDriven Multimodal Cohort Design and Analysis” • Previous Articles
LI Jing1,2, JU Weihang1,2, LIU Ke1,2
CLC Number:
| [1] Lee HK, Hsu AK, Sajdak J, et al. Coexpression analysis of human genes across many microarray data sets[J]. Genome Res, 2004, 14(6): 1085-1094. [2] Torkamani A, Dean B, Schork NJ, et al. Coexpression network analysis of neural tissue reveals perturbations in developmental processes in schizophrenia[J]. Genome Res, 2010, 20(4): 403-412. [3] Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis[J]. Stat Appl Genet Mol Biol, 2005, 4: Article17. doi: 10.2202/1544-6115.1128 [4] Mostafavi S, Gaiteri C, Sullivan SE, et al. A molecular network of the aging human brain provides insights into the pathology and cognitive decline of Alzheimers disease[J]. Nat Neurosci, 2018, 21(6): 811-819. [5] Hao RH, Zhang TP, Jiang F, et al. Revealing brain cell-stratified causality through dissecting causal variants according to their cell-type-specific effects on gene expre-ssion[J]. Nat Commun, 2024, 15(1): 4890. doi: 10.1038/s41467-024-49263-4 [6] Su C, Zhang JF, Zhao HY. Estimating cell-type-specific gene co-expression networks from bulk gene expression data with an application to Alzheimer’s disease[J]. J Am Stat Assoc, 2024, 119(546): 811-824. [7] Harris BD, Crow M, Fischer S, et al. Single-cell co-expression analysis reveals that transcriptional modules are shared across cell types in the brain[J]. Cell Syst, 2021, 12(7): 748-756. [8] Hao YH, Hao S, Andersen-Nissen E, et al. Integrated analysis of multimodal single-cell data[J]. Cell, 2021, 184(13): 3573-3587. [9] Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression[J]. Genome Biol, 2019, 20(1): 296. doi: 10.1186/s13059-019-1874-1 [10] Sarkar A, Stephens M. Separating measurement and expression models clarifies confusion in single-cell RNA sequencing analysis[J]. Nat Genet, 2021, 53(6): 770-777. [11] Kumar N, Mishra B, Athar M, et al. Inference of gene regulatory network from single-cell transcriptomic data using pySCENIC[J]. Methods Mol Biol, 2021, 2328: 171-182. doi: 10.1007/978-1-0716-1534-8_10 [12] Su C, Xu ZC, Shan XN, et al. Cell-type-specific co-expression inference from single cell RNA-sequencing data[J]. Nat Commun, 2023, 14(1): 4846. doi: 10.1038/s41467-023-40503-7 [13] Gavish A, Tyler M, Greenwald AC, et al. Hallmarks of transcriptional intratumour heterogeneity across a thousand tumours[J]. Nature, 2023, 618(7965): 598-606. [14] Shen WK, Chen SY, Gan ZQ, et al. AnimalTFDB 4.0: a comprehensive animal transcription factor database updated with variation and expression annotations[J]. Nucleic Acids Res, 2023, 51(D1): D39-D45. [15] Kanehisa M, Goto S. KEGG Kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Res, 2000, 28(1): 27-30. [16] Chen EY, Tan CM, Kou Y, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool[J]. BMC Bioinformatics, 2013, 14: 128. doi: 10.1186/1471-2105-14-128 [17] Kuleshov MV, Jones MR, Rouillard AD, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update[J]. Nucleic Acids Res, 2016, 44(W1): W90-W97. [18] Xie ZR, Bailey A, Kuleshov MV, et al. Gene set knowledge discovery with enrichr[J]. Curr Protoc, 2021, 1(3): e90. doi: 10.1002/cpz1.90 [19] Hao YH, Hao S, Andersen-Nissen E, et al. Integrated analysis of multimodal single-cell data[J]. Cell, 2021, 184(13): 3573-3587. [20] Wickham H. ggplot2: elegant graphics for data analysis[M]. New York: Springer-Verlag, 2016. [21] Gu ZG, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data[J]. Bioinformatics, 2016, 32(18): 2847-2849. [22] Yu GC, Wang LG, Han YY, et al. clusterProfiler: an R package for comparing biological themes among gene clusters[J]. OMICS, 2012, 16(5): 284-287. [23] Hu XL, Hu YH, Wu FJ, et al. Integration of single-cell multi-omics for gene regulatory network inference[J]. Comput Struct Biotechnol J, 2020, 18: 1925-1938. doi: 10.1016/j.csbj.2020.06.033 [24] Doughty BR, Hinks MM, Schaepe JM, et al. Single-molecule states link transcription factor binding to gene expression[J]. Nature, 2024, 636(8043): 745-754. [25] Kciuk M, Gielecińska A, Koat D, et al. Cancer-associated transcription factors in DNA damage response [J]. Biochim Biophys Acta Rev Cancer, 2022, 1877(4): 188757. doi: 10.1016/j.bbcan.2022.188757 [26] Farhan M, Silva M, Xing XG, et al. Role of FOXO transcription factors in cancer metabolism and angiogenesis[J]. Cells, 2020, 9(7): 1586. doi: 10.3390/cells9071586 [27] Jiramongkol Y, Lam EW. FOXO transcription factor family in cancer and metastasis[J]. Cancer Metastasis Rev, 2020, 39(3): 681-709. [28] Liu Y, Ao X, Jia Y, et al. The FOXO family of transcription factors: key molecular players in gastric cancer[J]. J Mol Med(Berl), 2022, 100(7): 997-1015. [29] Taneja N, Chauhan A, Kulshreshtha R, et al. HIF-1 mediated metabolic reprogramming in cancer: mechanisms and therapeutic implications[J]. Life Sci, 2024, 352: 122890. doi: 10.1016/j.lfs.2024.122890 [30] Lee SH, Golinska M, Griffiths JR. HIF-1-independent mechanisms regulating metabolic adaptation in hypoxic cancer cells[J]. Cells, 2021, 10(9): 2371. doi: 10.3390/cells10092371 [31] Rani S, Roy S, Singh M, et al. Regulation of transactivation at C-TAD domain of HIF-1 α by factor-inhibiting HIF-1 α(FIH-1): a potential target for therapeutic intervention in cancer[J]. Oxid Med Cell Longev, 2022, 2022: 2407223. doi: 10.1155/2022/2407223 [32] Infantino V, Santarsiero A, Convertini P, et al. Cancer cell metabolism in hypoxia: role of HIF-1 as key regulator and therapeutic target[J]. Int J Mol Sci, 2021, 22(11): 5703. doi: 10.3390/ijms22115703 [33] Kiesel VA, Sheeley MP, Coleman MF, et al. Pyruvate carboxylase and cancer progression[J]. Cancer Metab, 2021, 9(1): 20. doi: 10.1186/s40170-021-00256-7 [34] Huang BL, Song BL, Xu CQ. Cholesterol metabolism in cancer: mechanisms and therapeutic opportunities[J]. Nat Metab, 2020, 2(2): 132-141. [35] Shi QM, Xue C, Zeng YF, et al. Notch signaling pathway in cancer: from mechanistic insights to targeted therapies[J]. Signal Transduct Target Ther, 2024, 9(1): 128. doi: 10.1038/s41392-024-01828-x [36] Li LX, Tian Y. The role of metabolic reprogramming of tumor-associated macrophages in shaping the immunosuppressive tumor microenvironment[J]. Biomed Pharmacother, 2023, 161: 114504. doi: 10.1016/j.biopha.2023.114504 |
| [1] | ZHANG Runze, XUE Fuzhong, YANG Fan. Cancer subtype clustering via multimodal decoupled contrastive learning [J]. Journal of Shandong University (Health Sciences), 2025, 63(8): 51-60. |
| [2] | LI Qian, YANG Fan, XUE Fuzhong. Multi-cancer risk prediction model based on multi-modal data fusion [J]. Journal of Shandong University (Health Sciences), 2025, 63(8): 79-85. |
| [3] | LIU Baoguo, SONG Xiang, ZHAO Xiaowen, MAO Yali. Application value of serum STAT5B and NKAIN1 mRNA detection in breast cancer [J]. Journal of Shandong University (Health Sciences), 2025, 63(7): 68-74. |
| [4] | WANG Lei, CHANG Xiao, WANG Zimeng, LI Jiaojiao, CUI Shujun, YANG Fei, ZHU Yuexiang. Predictive value of intratumoral and peritumoral DCE-MRI imaging histology for progression-free survival in patients with cervical cancer [J]. Journal of Shandong University (Health Sciences), 2025, 63(6): 45-54. |
| [5] | WANG Xuemei, YANG Hao, SONG Yang, CHENG Shichao, ZHANG Tingting, WANG Yanchun. Causal association of antidiabetic drugs with female malignant tumours: a two-sample Mendelian randomisation study [J]. Journal of Shandong University (Health Sciences), 2025, 63(6): 67-77. |
| [6] | ZHU Yongcai, XIE Yan, QI Qiuchen, LI Peilong, WANG Chuanxin, DU Lutao. Value of a combined model based on ATM gene methylation of peripheral blood mononuclear cells in the early diagnosis of pancreatic cancer [J]. Journal of Shandong University (Health Sciences), 2025, 63(6): 78-88. |
| [7] | DU Xue, LI Chunxia, LIU Yunxia, ZHANG Tao. Dynamic prediction model for the colorectal cancer patients prognosis based on MFPC-Cox [J]. Journal of Shandong University (Health Sciences), 2025, 63(5): 101-110. |
| [8] | ZHAO Hanqing, ZHOU Xinrui, LI Zijian, TANG Xing. Application of circulating tumor cells combined with serological detection in non-small cell lung cancer [J]. Journal of Shandong University (Health Sciences), 2025, 63(5): 79-85. |
| [9] | GONG Rong, CUI Naixue, CHEN Kaiyue, ZHAO Jia, SHAN Ruijie, ZHANG Xunqi. Application of exergaming on childhood cancer survivors [J]. Journal of Shandong University (Health Sciences), 2025, 63(4): 94-99. |
| [10] | ZHANG Jie, ZHAO Yinghui, DONG Yaqi, LI Juan, LI Peilong, DU Lutao. Role of GPR133 gene methylation in predicting lymph node metastasis in early gastric cancer [J]. Journal of Shandong University (Health Sciences), 2025, 63(3): 76-84. |
| [11] | WANG Gang, XU Pengyan, ZHAO Xuan, WANG Haifeng, GE Miaomiao, PAN Huafeng, JIANG Zhiwei. Effect of ω-3 polyunsaturated fatty acids on recovery of autonomic nervous system and intestinal function after laparoscopic colorectal cancer surgery [J]. Journal of Shandong University (Health Sciences), 2025, 63(2): 36-42. |
| [12] | ZHAO Yunmulan, GAO Haiyan. Influencing factors for postoperative 131I treatment response and prognosis in patients with intermediate- and high-risk differentiated thyroid cancer [J]. Journal of Shandong University (Health Sciences), 2025, 63(2): 21-28. |
| [13] | XU Nianxing, WEI Dong, QIAO Junjie, ZHAN Bingyan. Predictive value of CD8+, IL-6, and PaO2 for immunotherapy-triggered radiation recall pneumonitis in unresectable stage ⅢB/C and IV non-small cell lung cancer [J]. Journal of Shandong University (Health Sciences), 2025, 63(2): 29-35. |
| [14] | CUI Qianqian, LI Jinpeng, WU Yudan, HOU Zhiping, SUN Weiluo, CUI Panpan, HE Peiyuan. Clinical value of fecal miRNA for non-invasive screening of advanced colorectal adenomas [J]. Journal of Shandong University (Health Sciences), 2025, 63(2): 43-50. |
| [15] | CHANG Yu, HU Yunfeng, WANG Huifeng, GUO Jing, ZHANG Tiao, HAO Yaqin, LIU Yu. A mendelian randomization study on the association between appendectomy and the risk of colorectal cancer [J]. Journal of Shandong University (Health Sciences), 2025, 63(2): 77-83. |
|
||