Journal of Shandong University (Health Sciences) ›› 2025, Vol. 63 ›› Issue (9): 31-39.doi: 10.6040/j.issn.1671-7554.0.2024.1401

• Special Issue on “Big DataEnabled, AI Foundation ModelDriven Multimodal Cohort Design and Analysis” • Previous Articles    

Pan-cancer cell type-specific gene-gene co-expression pattern

LI Jing1,2, JU Weihang1,2, LIU Ke1,2   

  1. 1. Department of Medical Dataology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China;
    2. National Institute of Health and Medicine Big Data, Jinan 250003, Shandong, China
  • Published:2025-09-08

Abstract: Objective To investigate the gene co-expression patterns across diverse cell types within multiple cancer tissues using single-cell omics data. Methods Utilizing large-scale public single-cell transcriptomics data and the CS-CORE method, cell type-specific gene co-expression profiles were generated for six common cell types across five distinct cancers. Results A total of 30 high-quality gene co-expression maps were obtained. Among the analyzed cell types, malignant cells exhibited the highest number of co-expressed gene pairs, suggesting a relatively complex gene regulatory mechanism. Hierarchical clustering across cancer types revealed that the regulatory breadth of transcription factors tended to be conserved within the same cell type. Additionally, macrophages displayed the most differentially co-expressed gene pairs, suggesting that the gene regulatory network of macrophages might be susceptible to the influence of the tumor microenvironment. Conclusion This study systematically constructs a cell type-specific gene co-expression map in cancer tissues, uncovering several gene co-expression patterns from a pan-cancer perspective.

Key words: Cell type specificity, Gene co-expression, Cancer, Single-cell transcriptome, Pan-cancer

CLC Number: 

  • R730.2
[1] Lee HK, Hsu AK, Sajdak J, et al. Coexpression analysis of human genes across many microarray data sets[J]. Genome Res, 2004, 14(6): 1085-1094.
[2] Torkamani A, Dean B, Schork NJ, et al. Coexpression network analysis of neural tissue reveals perturbations in developmental processes in schizophrenia[J]. Genome Res, 2010, 20(4): 403-412.
[3] Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis[J]. Stat Appl Genet Mol Biol, 2005, 4: Article17. doi: 10.2202/1544-6115.1128
[4] Mostafavi S, Gaiteri C, Sullivan SE, et al. A molecular network of the aging human brain provides insights into the pathology and cognitive decline of Alzheimers disease[J]. Nat Neurosci, 2018, 21(6): 811-819.
[5] Hao RH, Zhang TP, Jiang F, et al. Revealing brain cell-stratified causality through dissecting causal variants according to their cell-type-specific effects on gene expre-ssion[J]. Nat Commun, 2024, 15(1): 4890. doi: 10.1038/s41467-024-49263-4
[6] Su C, Zhang JF, Zhao HY. Estimating cell-type-specific gene co-expression networks from bulk gene expression data with an application to Alzheimer’s disease[J]. J Am Stat Assoc, 2024, 119(546): 811-824.
[7] Harris BD, Crow M, Fischer S, et al. Single-cell co-expression analysis reveals that transcriptional modules are shared across cell types in the brain[J]. Cell Syst, 2021, 12(7): 748-756.
[8] Hao YH, Hao S, Andersen-Nissen E, et al. Integrated analysis of multimodal single-cell data[J]. Cell, 2021, 184(13): 3573-3587.
[9] Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression[J]. Genome Biol, 2019, 20(1): 296. doi: 10.1186/s13059-019-1874-1
[10] Sarkar A, Stephens M. Separating measurement and expression models clarifies confusion in single-cell RNA sequencing analysis[J]. Nat Genet, 2021, 53(6): 770-777.
[11] Kumar N, Mishra B, Athar M, et al. Inference of gene regulatory network from single-cell transcriptomic data using pySCENIC[J]. Methods Mol Biol, 2021, 2328: 171-182. doi: 10.1007/978-1-0716-1534-8_10
[12] Su C, Xu ZC, Shan XN, et al. Cell-type-specific co-expression inference from single cell RNA-sequencing data[J]. Nat Commun, 2023, 14(1): 4846. doi: 10.1038/s41467-023-40503-7
[13] Gavish A, Tyler M, Greenwald AC, et al. Hallmarks of transcriptional intratumour heterogeneity across a thousand tumours[J]. Nature, 2023, 618(7965): 598-606.
[14] Shen WK, Chen SY, Gan ZQ, et al. AnimalTFDB 4.0: a comprehensive animal transcription factor database updated with variation and expression annotations[J]. Nucleic Acids Res, 2023, 51(D1): D39-D45.
[15] Kanehisa M, Goto S. KEGG Kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Res, 2000, 28(1): 27-30.
[16] Chen EY, Tan CM, Kou Y, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool[J]. BMC Bioinformatics, 2013, 14: 128. doi: 10.1186/1471-2105-14-128
[17] Kuleshov MV, Jones MR, Rouillard AD, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update[J]. Nucleic Acids Res, 2016, 44(W1): W90-W97.
[18] Xie ZR, Bailey A, Kuleshov MV, et al. Gene set knowledge discovery with enrichr[J]. Curr Protoc, 2021, 1(3): e90. doi: 10.1002/cpz1.90
[19] Hao YH, Hao S, Andersen-Nissen E, et al. Integrated analysis of multimodal single-cell data[J]. Cell, 2021, 184(13): 3573-3587.
[20] Wickham H. ggplot2: elegant graphics for data analysis[M]. New York: Springer-Verlag, 2016.
[21] Gu ZG, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data[J]. Bioinformatics, 2016, 32(18): 2847-2849.
[22] Yu GC, Wang LG, Han YY, et al. clusterProfiler: an R package for comparing biological themes among gene clusters[J]. OMICS, 2012, 16(5): 284-287.
[23] Hu XL, Hu YH, Wu FJ, et al. Integration of single-cell multi-omics for gene regulatory network inference[J]. Comput Struct Biotechnol J, 2020, 18: 1925-1938. doi: 10.1016/j.csbj.2020.06.033
[24] Doughty BR, Hinks MM, Schaepe JM, et al. Single-molecule states link transcription factor binding to gene expression[J]. Nature, 2024, 636(8043): 745-754.
[25] Kciuk M, Gielecińska A, Koat D, et al. Cancer-associated transcription factors in DNA damage response [J]. Biochim Biophys Acta Rev Cancer, 2022, 1877(4): 188757. doi: 10.1016/j.bbcan.2022.188757
[26] Farhan M, Silva M, Xing XG, et al. Role of FOXO transcription factors in cancer metabolism and angiogenesis[J]. Cells, 2020, 9(7): 1586. doi: 10.3390/cells9071586
[27] Jiramongkol Y, Lam EW. FOXO transcription factor family in cancer and metastasis[J]. Cancer Metastasis Rev, 2020, 39(3): 681-709.
[28] Liu Y, Ao X, Jia Y, et al. The FOXO family of transcription factors: key molecular players in gastric cancer[J]. J Mol Med(Berl), 2022, 100(7): 997-1015.
[29] Taneja N, Chauhan A, Kulshreshtha R, et al. HIF-1 mediated metabolic reprogramming in cancer: mechanisms and therapeutic implications[J]. Life Sci, 2024, 352: 122890. doi: 10.1016/j.lfs.2024.122890
[30] Lee SH, Golinska M, Griffiths JR. HIF-1-independent mechanisms regulating metabolic adaptation in hypoxic cancer cells[J]. Cells, 2021, 10(9): 2371. doi: 10.3390/cells10092371
[31] Rani S, Roy S, Singh M, et al. Regulation of transactivation at C-TAD domain of HIF-1 α by factor-inhibiting HIF-1 α(FIH-1): a potential target for therapeutic intervention in cancer[J]. Oxid Med Cell Longev, 2022, 2022: 2407223. doi: 10.1155/2022/2407223
[32] Infantino V, Santarsiero A, Convertini P, et al. Cancer cell metabolism in hypoxia: role of HIF-1 as key regulator and therapeutic target[J]. Int J Mol Sci, 2021, 22(11): 5703. doi: 10.3390/ijms22115703
[33] Kiesel VA, Sheeley MP, Coleman MF, et al. Pyruvate carboxylase and cancer progression[J]. Cancer Metab, 2021, 9(1): 20. doi: 10.1186/s40170-021-00256-7
[34] Huang BL, Song BL, Xu CQ. Cholesterol metabolism in cancer: mechanisms and therapeutic opportunities[J]. Nat Metab, 2020, 2(2): 132-141.
[35] Shi QM, Xue C, Zeng YF, et al. Notch signaling pathway in cancer: from mechanistic insights to targeted therapies[J]. Signal Transduct Target Ther, 2024, 9(1): 128. doi: 10.1038/s41392-024-01828-x
[36] Li LX, Tian Y. The role of metabolic reprogramming of tumor-associated macrophages in shaping the immunosuppressive tumor microenvironment[J]. Biomed Pharmacother, 2023, 161: 114504. doi: 10.1016/j.biopha.2023.114504
[1] ZHANG Runze, XUE Fuzhong, YANG Fan. Cancer subtype clustering via multimodal decoupled contrastive learning [J]. Journal of Shandong University (Health Sciences), 2025, 63(8): 51-60.
[2] LI Qian, YANG Fan, XUE Fuzhong. Multi-cancer risk prediction model based on multi-modal data fusion [J]. Journal of Shandong University (Health Sciences), 2025, 63(8): 79-85.
[3] LIU Baoguo, SONG Xiang, ZHAO Xiaowen, MAO Yali. Application value of serum STAT5B and NKAIN1 mRNA detection in breast cancer [J]. Journal of Shandong University (Health Sciences), 2025, 63(7): 68-74.
[4] WANG Lei, CHANG Xiao, WANG Zimeng, LI Jiaojiao, CUI Shujun, YANG Fei, ZHU Yuexiang. Predictive value of intratumoral and peritumoral DCE-MRI imaging histology for progression-free survival in patients with cervical cancer [J]. Journal of Shandong University (Health Sciences), 2025, 63(6): 45-54.
[5] WANG Xuemei, YANG Hao, SONG Yang, CHENG Shichao, ZHANG Tingting, WANG Yanchun. Causal association of antidiabetic drugs with female malignant tumours: a two-sample Mendelian randomisation study [J]. Journal of Shandong University (Health Sciences), 2025, 63(6): 67-77.
[6] ZHU Yongcai, XIE Yan, QI Qiuchen, LI Peilong, WANG Chuanxin, DU Lutao. Value of a combined model based on ATM gene methylation of peripheral blood mononuclear cells in the early diagnosis of pancreatic cancer [J]. Journal of Shandong University (Health Sciences), 2025, 63(6): 78-88.
[7] DU Xue, LI Chunxia, LIU Yunxia, ZHANG Tao. Dynamic prediction model for the colorectal cancer patients prognosis based on MFPC-Cox [J]. Journal of Shandong University (Health Sciences), 2025, 63(5): 101-110.
[8] ZHAO Hanqing, ZHOU Xinrui, LI Zijian, TANG Xing. Application of circulating tumor cells combined with serological detection in non-small cell lung cancer [J]. Journal of Shandong University (Health Sciences), 2025, 63(5): 79-85.
[9] GONG Rong, CUI Naixue, CHEN Kaiyue, ZHAO Jia, SHAN Ruijie, ZHANG Xunqi. Application of exergaming on childhood cancer survivors [J]. Journal of Shandong University (Health Sciences), 2025, 63(4): 94-99.
[10] ZHANG Jie, ZHAO Yinghui, DONG Yaqi, LI Juan, LI Peilong, DU Lutao. Role of GPR133 gene methylation in predicting lymph node metastasis in early gastric cancer [J]. Journal of Shandong University (Health Sciences), 2025, 63(3): 76-84.
[11] WANG Gang, XU Pengyan, ZHAO Xuan, WANG Haifeng, GE Miaomiao, PAN Huafeng, JIANG Zhiwei. Effect of ω-3 polyunsaturated fatty acids on recovery of autonomic nervous system and intestinal function after laparoscopic colorectal cancer surgery [J]. Journal of Shandong University (Health Sciences), 2025, 63(2): 36-42.
[12] ZHAO Yunmulan, GAO Haiyan. Influencing factors for postoperative 131I treatment response and prognosis in patients with intermediate- and high-risk differentiated thyroid cancer [J]. Journal of Shandong University (Health Sciences), 2025, 63(2): 21-28.
[13] XU Nianxing, WEI Dong, QIAO Junjie, ZHAN Bingyan. Predictive value of CD8+, IL-6, and PaO2 for immunotherapy-triggered radiation recall pneumonitis in unresectable stage ⅢB/C and IV non-small cell lung cancer [J]. Journal of Shandong University (Health Sciences), 2025, 63(2): 29-35.
[14] CUI Qianqian, LI Jinpeng, WU Yudan, HOU Zhiping, SUN Weiluo, CUI Panpan, HE Peiyuan. Clinical value of fecal miRNA for non-invasive screening of advanced colorectal adenomas [J]. Journal of Shandong University (Health Sciences), 2025, 63(2): 43-50.
[15] CHANG Yu, HU Yunfeng, WANG Huifeng, GUO Jing, ZHANG Tiao, HAO Yaqin, LIU Yu. A mendelian randomization study on the association between appendectomy and the risk of colorectal cancer [J]. Journal of Shandong University (Health Sciences), 2025, 63(2): 77-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!