Journal of Shandong University (Health Sciences) ›› 2025, Vol. 63 ›› Issue (8): 41-50.doi: 10.6040/j.issn.1671-7554.0.2025.0511
• Clinical Research • Previous Articles
WANG Mengxing1, XUE Fuzhong1,2,3, YANG Fan1,2,3
CLC Number:
| [1] Ilonen J, Lempainen J, Veijola R. The heterogeneous pathogenesis of type 1 diabetes mellitus[J]. Nat Rev Endocrinol, 2019, 15(11): 635-650. [2] International Diabetes Federation. IDF diabetes atlas, 11th edn[R]. Brussels, Belgium: International Diabetes Federation, 2025. [3] Martín-Timón I, Del Cañizo-Gómez FJ. Mechanisms of hypoglycemia unawareness and implications in diabetic patients[J]. World J Diabetes, 2015, 6(7): 912-926. [4] 师瑞, 冯磊, 唐灵通, 等. 糖尿病患者血糖波动评价指标研究进展[J]. 中华全科医学, 2022, 20(12): 2105-2109. SHI Rui, FENG Lei, TANG Lingtong, et al. Research progress on evaluation indicators of blood glucose fluctuation in patients with diabetes[J]. Chinese Journal of General Practice, 2022, 20(12): 2105-2109. [5] Nemat H, Khadem H, Elliott J, et al. Data-driven blood glucose level prediction in type 1 diabetes: a comprehensive comparative analysis[J]. Sci Rep, 2024, 14: 21863. doi:10.1038/s41598-024-70277-x [6] Wang Q, Molenaar P, Harsh S, et al. Personalized state-space modeling of glucose dynamics for type 1 diabetes using continuously monitored glucose, insulin dose, and meal intake: an extended Kalman filter approach[J]. J Diabetes Sci Technol, 2014, 8(2): 331-345. [7] 肖泽秋, 李勇, 王霞. 基于PBI-CLA模型的糖尿病患者血糖浓度预测[J]. 计算机工程, 2025: 1-11. doi: 10.19678/j.issn.1000-3428.0070527 XIAO Zeqiu, LI Yong, WANG Xia. Prediction of blood glucose concentration in diabetic patients based on PBI-CLA model[J]. China Industrial Economics, 2025: 1-11. doi: 10.19678/j.issn.1000-3428.0070527 [8] 童梦, 丁国荣, 余楠, 等. 一种基于VMD-PSO-LSTM的血糖预测方法[J]. 计算机与数字工程, 2023, 51(6): 1439-1443. TONG Meng, DING Guorong, YU Nan, et al. Prediction method of blood glucose based on VMD-PSO-LSTM[J]. Computer & Digital Engineering, 2023, 51(6): 1439-1443. [9] Wang L, Pan ZL, Liu W, et al. A dual-attention based coupling network for diabetes classification with heterogeneous data[J]. J Biomed Inform, 2023, 139: 104300. doi:10.1016/j.jbi.2023.104300 [10] Rodriguez-Leon C, Aviles-Perez MD, Banos O, et al. T1DiabetesGranada: a longitudinal multi-modal dataset of type 1 diabetes mellitus[J]. Sci Data, 2023, 10(1): 916. doi:10.1038/s41597-023-02737-4 [11] Engels JM, Diehr P. Imputation of missing longitudinal data: a comparison of methods[J]. J Clin Epidemiol, 2003, 56(10): 968-976. [12] Dahouda MK, Joe I. A deep-learned embedding technique for categorical features encoding[J]. IEEE Access, 2021, 9: 114381-114391. doi:10.1109/ACCESS.2021.3104357 [13] Jain YK, Bhandare SK. Min max normalization based data perturbation method for privacy protection[J]. Int J Comput Commun Technol, 2013: 233-238. doi:10.47893/ijcct.2013.1201 [14] Palangi H, Deng L, Shen YL, et al. Deep sentence embedding using long short-term memory networks: analysis and application to information retrieval[J]. IEEE/ACM Trans Audio Speech Lang Process, 2016, 24(4): 694-707. [15] Shi J, Telesca D, Suchard MA. Statistical learning techniques applied to epidemiology: a simulated case-control comparison study with logistic regression[J]. BMC Bioinformatics, 2011, 12: 37. doi:10.1186/1471-2105-12-37 [16] Zhang J, He XH, Liu Y, et al. Multi-modal cross-attention network for Alzheimers disease diagnosis with multi-modality data[J]. Comput Biol Med, 2023, 162: 107050. doi:10.1016/j.compbiomed.2023.107050 [17] Klambauer G, Unterthiner T, Mayr A, et al. Self-normalizing neural networks[EB/OL].(2017-09-07)[2025-04-26]. https://doi.org/10.48550/arXiv.1706.02515 [18] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[EB/OL].(2023-08-02)[2025-04-26]. https://doi.org/10.48550/arXiv.1706.03762 [19] Santurkar S, Tsipras D, Ilyas A, et al. How does batch normalization help optimization?[EB/OL].(2019-04-15)[2025-04-26]. https://doi.org/10.48550/arXiv.1805.11604 [20] Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. J Mach Learn Res, 2014, 15: 1929-1958. doi: 10.5555/2627435.2670313 [21] 陶蔚, 陇盛, 刘鑫, 等. 深度学习步长自适应动量优化方法研究综述[J]. 小型微型计算机系统, 2025, 46(2): 257-265. TAO Wei, LONG Sheng, LIU Xin, et al. Review of adaptive stepsize momentum optimization methods in deep learning[J]. Journal of Chinese Computer Systems, 2025, 46(2): 257-265. [22] Felizardo V, Garcia NM, Pombo N, et al. Data-based algorithms and models using diabetics real data for blood glucose and hypoglycaemia prediction-a systematic literature review[J]. Artif Intell Med, 2021, 118: 102120. doi:10.1016/j.artmed.2021.102120 [23] Clarke WL. The original Clarke error grid analysis(EGA)[J]. Diabetes Technol Ther, 2005, 7(5): 776-779. [24] Shiri FM, Perumal T, Mustapha N, et al. A comprehensive overview and comparative analysis on deep learning models: CNN, RNN, LSTM, GRU[EB/OL].(2025-03-17)[2025-04-26]. https://doi.org/10.48550/arXiv.2305.17473 [25] Kamyshanska H, Memisevic R. The potential energy of an autoencoder[J]. IEEE Trans Pattern Anal Mach Intell, 2015, 37(6): 1261-1273. [26] Deng YX, Lu L, Aponte L, et al. Deep transfer learning and data augmentation improve glucose levels prediction in type 2 diabetes patients[J]. NPJ Digit Med, 2021, 4(1): 109. doi:10.1038/s41746-021-00480-x [27] Yang T, Yu X, Tao R, et al. Blood glucose prediction for type 2 diabetes using clustering-based domain adaptation[J]. Biomed Signal Process Contr, 2025, 105: 107629. doi:10.1016/j.bspc.2025.107629 [28] Pfützner A, Klonoff DC, Pardo S, et al. Technical aspects of the Parkes error grid[J]. J Diabetes Sci Technol, 2013, 7(5): 1275-1281. [29] Yu X, Yang Z, Wang XZ, et al. A prior-knowledge-guided dynamic attention mechanism to predict nocturnal hypoglycemic events in type 1 diabetes[J]. BMC Med Inform Decis Mak, 2024, 24(1): 378. doi:10.1186/s12911-024-02761-3 [30] Van den Broeck G, Lykov A, Schleich M, et al. On the tractability of SHAP explanations[J]. Jair, 2022, 74: 851-886. doi:10.1613/jair.1.13283 |
| [1] | YU Jian, YE Yao, HUANG Lili, LIU Xiaoling, MO Rufen, YANG Fan, HU Jing, ZHOU Yingqiong, HE Yongling. Pancreatic pathological and biochemical changes in a Bama miniature pig model of type 1 diabetes mellitus [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2014, 52(12): 10-14. |
| [2] | LIU Mei1, ZHANG Jun2, WANG Xu-xia3. Changes of the mineral density of the alveolar bone between T1DM and T2DM rats [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2011, 49(9): 53-. |
|
||