Journal of Shandong University (Health Sciences) ›› 2025, Vol. 63 ›› Issue (8): 41-50.doi: 10.6040/j.issn.1671-7554.0.2025.0511

• Clinical Research • Previous Articles    

Blood glucose concentration prediction method for type 1 diabetes mellitus based on multi-modal cross-attention mechanism fusion

WANG Mengxing1, XUE Fuzhong1,2,3, YANG Fan1,2,3   

  1. 1. Department of Medical Dataology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China;
    2. National Institute of Health and Medical Big Data, Jinan 250003, Shandong, China;
    3. Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
  • Published:2025-08-25

Abstract: Objective To develop a blood glucose concentration prediction model for patients with type 1 diabetes mellitus(T1DM)by integrating multimodal information from flash glucose monitoring(FGM)data and structured electronic health records(EHR), so as to address the limitations of traditional unimodal models in capturing complex glucose fluctuation patterns and provide data support for personalized glycemic control strategies and early risk warning in clinical practice. Methods Based on the T1DiabetesGranada dataset, the study integrated multimodal features including FGM data, biochemical test indicators, demographic information, and diagnostic codes to construct a multimodal temporal prediction model, XCLA-Net. The model employed a one-dimensional convolutional neural network(1D-CNN)to extract short-term dynamic features of the glucose sequence, combined a long short-term memory(LSTM)network to capture long-term temporal dependencies, incorporated a cross-attention mechanism for multimodal semantic alignment, and introduced a self-normalizing neural network(SNN)to enhance the stability of the fused representations. Results XCLA-Net significantly outperformed multiple baseline models in terms of error metrics such as root mean square error(RMSE), mean absolute error(MAE), and mean absolute percentage error(MAPE). The MAPE values for 1-hour and 3-hour prediction tasks were 19.64% and 37.81%, respectively, indicating strong predictive accuracy across different temporal scales. Clarke error grid analysis showed that the majority of prediction points fell within Zone A, reflecting good clinical consistency. Ablation experiments confirm the critical roles of the cross-attention mechanism, 1D-CNN, and LSTM in enhancing model performance. Conclusion The proposed XCLA-Net model effectively improves the accuracy and stability of blood glucose prediction through multimodal data fusion and temporal modeling. It demonstrates favorable clinical interpretability and practical value, providing reliable support for personalized glycemic management and early risk prediction in patients with T1DM.

Key words: Type 1 diabetes mellitus, Multimodal data fusion, Cross-attention mechanism, Blood glucose prediction, Time series modeling

CLC Number: 

  • R587.1
[1] Ilonen J, Lempainen J, Veijola R. The heterogeneous pathogenesis of type 1 diabetes mellitus[J]. Nat Rev Endocrinol, 2019, 15(11): 635-650.
[2] International Diabetes Federation. IDF diabetes atlas, 11th edn[R]. Brussels, Belgium: International Diabetes Federation, 2025.
[3] Martín-Timón I, Del Cañizo-Gómez FJ. Mechanisms of hypoglycemia unawareness and implications in diabetic patients[J]. World J Diabetes, 2015, 6(7): 912-926.
[4] 师瑞, 冯磊, 唐灵通, 等. 糖尿病患者血糖波动评价指标研究进展[J]. 中华全科医学, 2022, 20(12): 2105-2109. SHI Rui, FENG Lei, TANG Lingtong, et al. Research progress on evaluation indicators of blood glucose fluctuation in patients with diabetes[J]. Chinese Journal of General Practice, 2022, 20(12): 2105-2109.
[5] Nemat H, Khadem H, Elliott J, et al. Data-driven blood glucose level prediction in type 1 diabetes: a comprehensive comparative analysis[J]. Sci Rep, 2024, 14: 21863. doi:10.1038/s41598-024-70277-x
[6] Wang Q, Molenaar P, Harsh S, et al. Personalized state-space modeling of glucose dynamics for type 1 diabetes using continuously monitored glucose, insulin dose, and meal intake: an extended Kalman filter approach[J]. J Diabetes Sci Technol, 2014, 8(2): 331-345.
[7] 肖泽秋, 李勇, 王霞. 基于PBI-CLA模型的糖尿病患者血糖浓度预测[J]. 计算机工程, 2025: 1-11. doi: 10.19678/j.issn.1000-3428.0070527 XIAO Zeqiu, LI Yong, WANG Xia. Prediction of blood glucose concentration in diabetic patients based on PBI-CLA model[J]. China Industrial Economics, 2025: 1-11. doi: 10.19678/j.issn.1000-3428.0070527
[8] 童梦, 丁国荣, 余楠, 等. 一种基于VMD-PSO-LSTM的血糖预测方法[J]. 计算机与数字工程, 2023, 51(6): 1439-1443. TONG Meng, DING Guorong, YU Nan, et al. Prediction method of blood glucose based on VMD-PSO-LSTM[J]. Computer & Digital Engineering, 2023, 51(6): 1439-1443.
[9] Wang L, Pan ZL, Liu W, et al. A dual-attention based coupling network for diabetes classification with heterogeneous data[J]. J Biomed Inform, 2023, 139: 104300. doi:10.1016/j.jbi.2023.104300
[10] Rodriguez-Leon C, Aviles-Perez MD, Banos O, et al. T1DiabetesGranada: a longitudinal multi-modal dataset of type 1 diabetes mellitus[J]. Sci Data, 2023, 10(1): 916. doi:10.1038/s41597-023-02737-4
[11] Engels JM, Diehr P. Imputation of missing longitudinal data: a comparison of methods[J]. J Clin Epidemiol, 2003, 56(10): 968-976.
[12] Dahouda MK, Joe I. A deep-learned embedding technique for categorical features encoding[J]. IEEE Access, 2021, 9: 114381-114391. doi:10.1109/ACCESS.2021.3104357
[13] Jain YK, Bhandare SK. Min max normalization based data perturbation method for privacy protection[J]. Int J Comput Commun Technol, 2013: 233-238. doi:10.47893/ijcct.2013.1201
[14] Palangi H, Deng L, Shen YL, et al. Deep sentence embedding using long short-term memory networks: analysis and application to information retrieval[J]. IEEE/ACM Trans Audio Speech Lang Process, 2016, 24(4): 694-707.
[15] Shi J, Telesca D, Suchard MA. Statistical learning techniques applied to epidemiology: a simulated case-control comparison study with logistic regression[J]. BMC Bioinformatics, 2011, 12: 37. doi:10.1186/1471-2105-12-37
[16] Zhang J, He XH, Liu Y, et al. Multi-modal cross-attention network for Alzheimers disease diagnosis with multi-modality data[J]. Comput Biol Med, 2023, 162: 107050. doi:10.1016/j.compbiomed.2023.107050
[17] Klambauer G, Unterthiner T, Mayr A, et al. Self-normalizing neural networks[EB/OL].(2017-09-07)[2025-04-26]. https://doi.org/10.48550/arXiv.1706.02515
[18] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[EB/OL].(2023-08-02)[2025-04-26]. https://doi.org/10.48550/arXiv.1706.03762
[19] Santurkar S, Tsipras D, Ilyas A, et al. How does batch normalization help optimization?[EB/OL].(2019-04-15)[2025-04-26]. https://doi.org/10.48550/arXiv.1805.11604
[20] Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. J Mach Learn Res, 2014, 15: 1929-1958. doi: 10.5555/2627435.2670313
[21] 陶蔚, 陇盛, 刘鑫, 等. 深度学习步长自适应动量优化方法研究综述[J]. 小型微型计算机系统, 2025, 46(2): 257-265. TAO Wei, LONG Sheng, LIU Xin, et al. Review of adaptive stepsize momentum optimization methods in deep learning[J]. Journal of Chinese Computer Systems, 2025, 46(2): 257-265.
[22] Felizardo V, Garcia NM, Pombo N, et al. Data-based algorithms and models using diabetics real data for blood glucose and hypoglycaemia prediction-a systematic literature review[J]. Artif Intell Med, 2021, 118: 102120. doi:10.1016/j.artmed.2021.102120
[23] Clarke WL. The original Clarke error grid analysis(EGA)[J]. Diabetes Technol Ther, 2005, 7(5): 776-779.
[24] Shiri FM, Perumal T, Mustapha N, et al. A comprehensive overview and comparative analysis on deep learning models: CNN, RNN, LSTM, GRU[EB/OL].(2025-03-17)[2025-04-26]. https://doi.org/10.48550/arXiv.2305.17473
[25] Kamyshanska H, Memisevic R. The potential energy of an autoencoder[J]. IEEE Trans Pattern Anal Mach Intell, 2015, 37(6): 1261-1273.
[26] Deng YX, Lu L, Aponte L, et al. Deep transfer learning and data augmentation improve glucose levels prediction in type 2 diabetes patients[J]. NPJ Digit Med, 2021, 4(1): 109. doi:10.1038/s41746-021-00480-x
[27] Yang T, Yu X, Tao R, et al. Blood glucose prediction for type 2 diabetes using clustering-based domain adaptation[J]. Biomed Signal Process Contr, 2025, 105: 107629. doi:10.1016/j.bspc.2025.107629
[28] Pfützner A, Klonoff DC, Pardo S, et al. Technical aspects of the Parkes error grid[J]. J Diabetes Sci Technol, 2013, 7(5): 1275-1281.
[29] Yu X, Yang Z, Wang XZ, et al. A prior-knowledge-guided dynamic attention mechanism to predict nocturnal hypoglycemic events in type 1 diabetes[J]. BMC Med Inform Decis Mak, 2024, 24(1): 378. doi:10.1186/s12911-024-02761-3
[30] Van den Broeck G, Lykov A, Schleich M, et al. On the tractability of SHAP explanations[J]. Jair, 2022, 74: 851-886. doi:10.1613/jair.1.13283
[1] YU Jian, YE Yao, HUANG Lili, LIU Xiaoling, MO Rufen, YANG Fan, HU Jing, ZHOU Yingqiong, HE Yongling. Pancreatic pathological and biochemical changes in a Bama miniature pig model of type 1 diabetes mellitus [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2014, 52(12): 10-14.
[2] LIU Mei1, ZHANG Jun2, WANG Xu-xia3. Changes of the mineral density of the alveolar bone between T1DM and T2DM rats [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2011, 49(9): 53-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!