Journal of Shandong University (Health Sciences) ›› 2019, Vol. 57 ›› Issue (11): 78-82.doi: 10.6040/j.issn.1671-7554.0.2019.482

Previous Articles    

A case report and literature review of complex heterozygous SYNE1 mutation with autosomal recessive cerebellar ataxia type1

HU Liping1, WANG Le2, JIN Liang1, LIU Yanxia1, CUI Dongqing1, CAO Lili1   

  1. 1. Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China;
    2. Department of Neurology, Peoples Hospital of Dezhou, Dezhou 253056, Shandong, China
  • Published:2022-09-27

Abstract: Objective To search for the disease-causing gene in a family with autosomal recessive cerebellar ataxia type 1(ARCA1). Methods The young female with chronic progressive ARCA received clinical examination, neuroimaging, target region capture and high-throughput sequencing. Results Target region capture sequencing yielded compound heterozygous mutations in exon 67 at codon 10 887(c.10887dupT)and exon 41 at codon 5 995(c.5995A>2T, p. K1999X)of the SYNE1 gene. The results of Sanger sequencing were identified in the patients parents. Conclusion Two novel compound heterozygous mutations in SYNE1 are identified and an ARCA1 family with novel SYNE1 gene mutation is reported for the first time in China.

Key words: Autosomal recessive cerebellar ataxia type 1, SYNE1 gene mutations, High-throughput sequencing, Ataxia

CLC Number: 

  • R744.7
[1] Gros-Louis F, Dupré N, Dion P, et al. Mutations in SYNE1 lead to a newly discovered form of autosomal recessive cerebellar ataxia[J]. Nat Genet, 2007,39(1): 80-85.
[2] Noreau A, Bourassa CV, Szuto A, et al. SYNE1 mutations in autosomal recessive cerebellar ataxia[J]. JAMA Neurol, 2013, 70(10): 1296-1301.
[3] Yoshinaga T, Nakamura K, ishikawa M, et al. A novel frameshift mutation of SYNE1 in a Japanese family with autosomal recessive cerebellar ataxia type 8[J]. Hum Genome Var, 2017, 4: 17052. doi: 10.1038/hgv.2017.52.
[4] Hamza W, Ali Pacha L, Hamadouche T, et al. Molecular and clinical study of a cohort of 110 Algerian patients with autosomal recessive ataxia[J]. BMC Med Genet, 2015,16: 36. doi 10.1186/s12881-015-0180-3.
[5] Gama MT, Houle G, Noreau A, et al. SYNE1 mutations cause autosomal-recessive ataxia with retained reflexes in Brazilian patients[J]. Mov Disord, 2016, 31(11): 1754-1756.
[6] Algahtani H, Marzouk Y, Algahtani R, et al. Autosomal recessive ataxia type 1 mimicking multiple sclerosis: a report of two siblings with a novel mutation in SYNE1 gene in a Saudi family[J]. J Neurol Sci, 2017, 372(1): 97-100.
[7] Yucesan E, Ugur Iseri SA, Bilgic B, et al. SYNE1 related cerebellar ataxia presents with variable phenotypes in a consanguineous family from Turkey[J]. Neurol Sci, 2017, 38(12): 2203-2207.
[8] Lzumi Y, Miyamoto R, Morino H, et al. Cerebellar ataxia with SYNE1 mutation accompanying motor neuron disease[J]. Neurology, 2013, 80(6): 600-601.
[9] Synofzik M, mets K, Mallaret M, et al. SYNE1 ataxia is a common recessive ataxia with major non-cerebellar features: a large scale multi-centre study[J]. Brain, 2016, 139(5): 1378-1393.
[10] Wiethoff S, Hersheson J, Bettencourt C, et al. Heterogeneity in clinical features and disease severity in ataxia-associated SYNE1 mutations[J]. J Neurol, 2016, 263(8): 1503-1510.
[11] Laforce R Jr, Buteau JP, Bouchard JP, et al. Cognitive impairment in ARCA-1, a newly discovered pure cerebellar ataxia syndrome[J]. Cerebellum, 2010, 9(3): 443-453.
[12] Swan L, Cardinal J, Coman D. SYNE1-related autosomal recessive cerebellar ataxia, congenital cerebellar hypoplasia, and cognitive impairment[J]. Clin Pract, 2018, 8(3): 1071. doi: 10.4081/cp.2018.1071.
[13] Thiffault I, Dicaire MJ, Tetreault M, et al. Diversity of ARSACS mutations in French-Canadians[J]. Can J Neurol Sci, 2013, 40(1): 61-66.
[14] Duquette A, Roddier K, McNabb-Baltar J, et al. Mutations in senataxin responsible for Quebec cluster of ataxia with neuropathy[J]. Ann Neurol, 2005, 57(3): 408-414.
[15] Dupre N, Gros-louis F, Chrestian N, et al. Clinical and genetic study of autosomal recessive cerebellar ataxia type 1[J]. Ann Neurol, 2007, 62(1): 93-98.
[16] Puckelwartz MJ, Kessler E, Zhang Y, et al. Disruption of nesprin-1 produces an Emery Dreifuss muscular dystrophy- like phenotype in mice[J]. Hum Mol Genet, 2009, 18(4): 607-620.
[17] Zhang J, Felder A, Liu Y, et al. Nesprin 1 is critical for nuclear positioning and anchorage[J]. Hum Mol Genet, 2010, 19(2): 329-341. doi: 10.1093/hmg/ddp499.
[18] Attali R, Warwar N, Israel A, et al. Mutation of SYNE-1, encoding an essential component of the nuclear lamina, is responsible for autosomal recessive arthrogryposis[J]. Hum Mol Genet, 2009, 18(18): 3462-3469.
[19] Chen Z, Ren Z, Mei W, et al. A novel SYNE1 gene mutation in a Chinese family of Emery-Dreifuss muscular dystrophy-like[J]. BMC Medical Genetics, 2017, 18(1): 63. doi: 10.1186/s12881-017-0424-5.
[20] Zhang Q, Bethmann C, Worth NF, et al. Nesprin-1 and -2 are involved in the pathogenesis of Emery-Dreifuss muscular dystrophy and are critical for nuclear envelope integrity[J]. Hum Mol Genet, 2007, 16(23): 2816-2833.
[21] Fanin M, Savarese M, Nascimbeni AC, et al. Dominant muscular dystrophy with a novel SYNE1 gene mutation[J]. Muscle Nerve, 2015, 51(1): 145-147.
[22] Ikeda Y, Dick KA, Weatherspoon MR, et al. Spectrin mutations cause spinocerebellar ataxia type 5[J]. Nat Genet, 2006, 38(2): 184-190.
[23] Ishikawa K, Toru S, Tsunemi T, et al. An autosomal dominant cerebellar ataxia linked to chromosome 16q22.1 is associated with a single-nucleotide subtitution in the 5; untranslated region of the gene encoding a protein with spectrin repeat and Rho guanine-nucleotide exchange-factor domains[J]. Am J Hum Genet, 2005, 77(2): 280-296.
[24] Stevanin G, Herman A, Brice A, et al. Clinical and MRI findings in Spinocerebellar ataxia type 5[J]. Neurology, 1999, 53(6): 1355-1357.
[25] Burk K, Zuhlke C, Konig IR, et al. Spinocerebellar ataxia type 5: clinical and molecular genetic features of a German kindred[J]. Neurology, 2004, 62(2): 327-329.
[1] KONG Wencheng, XU Guangrun, JIA Junli, CUI Xinyu. Cerebrotendinous xanthomatosis: a case report and literature review [J]. Journal of Shandong University (Health Sciences), 2021, 59(11): 72-75.
[2] WANG Xin. Development of gene sequencing in the diagnosis and treatment of lymphoma [J]. Journal of Shandong University (Health Sciences), 2019, 57(7): 50-54.
[3] WANG Haitao. Development of precision medicine in the treatment of castration-resistant prostate cancer [J]. Journal of Shandong University (Health Sciences), 2019, 57(1): 30-35.
[4] SONG Lijin, GU Xiang, LI Lixiang, LI Ming, ZUO Xiuli, LI Yanqing. Effects of Fusobacterium nucleatum gavage on the intestinal microbiota of rats [J]. Journal of Shandong University (Health Sciences), 2018, 56(7): 7-14.
[5] ZHAO Li, LI Lixiang, CHEN Feixue, ZUO Xiuli, LI Yanqing. Effect of Bacillus subtilis gavage on the intestinal microbiota of mice [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(10): 28-35.
[6] LUAN Haihui, XU Wei, WANG Muchuan, WU Lin, WANG Lingling, MA Jun, LIU Yiming. Clinical, pathological and molecular biological study on a Chinese family of Spinocerebellar Ataxia type 6 [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2016, 54(2): 63-67.
[7] GAO Rui1, GAN Shang-quan2. Analysis of small RNAs induced by cerebral ischemia reperfusion injury [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2011, 49(10): 83-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!