Journal of Shandong University (Health Sciences) ›› 2018, Vol. 56 ›› Issue (4): 8-17.doi: 10.6040/j.issn.1671-7554.0.2018.019

Previous Articles    

Activation and clinical application of mammalian primordial follicles

ZHANG Hua, DAI Yanli, ZHANG Jiawei   

  1. State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China)〓山〓东〓大〓学〓学〓报〓(医〓学〓版)56卷4期〓-张华, 等.原始卵泡的激活与临床应用〓\=-
  • Published:2022-09-27

Abstract: Mammalian ovaries consist of follicles as basic functional units of female reproduction. Unlike the stem cells contained in male testes, the follicle reserve is finite and un-renewable in adult life. In most mammalian species, primordial follicle pool established in early life determines the length of female reproductive lifespan. Most primordial follicles stay dormant after formation and only a limited number of primordial follicles are progressively recruited into growing pool through a process called follicle activation. Therefore, the number of primordial follicles in the ovary directly determines the fecundity of female, and the balance between dormancy and activation of primordial follicles maintains a proper reproductive lifespan in organisms. With the advances of genetically modified mouse models, the mechanisms of the formation and activation of primordial follicles have been revealed. Moreover, the in-depth understanding of the cellular and molecular mechanisms of primordial follicle activation lead to more efficient approaches to treat female infertility. In this review, the current state of studies and clinical applications of primordial follicles have been summarized.

Key words: Primordial follicle, Follicle activation, Follicle dormancy, Signaling pathway, In vitro activation

CLC Number: 

  • R321.1
[1] Morohaku K, Hirao Y, Obata Y. Development of fertile mouse oocytes from mitotic germ cells in vitro[J]. Nat Protoc, 2017, 12(9): 1817-1829.
[2] Maheshwari A, Fowler PA. Primordial follicular assembly in humans-revisited[J]. Zygote, 2008, 16(4): 285-296.
[3] Grive KJ, Freiman RN. The developmental origins of the mammalian ovarian reserve[J]. Dev, 2015, 142(15): 2554-2563.
[4] Peters H. The development of the mouse ovary from birth to maturity[J]. Acta Endocrinol, 1969, 62(1): 98-116.
[5] Zhang H, Risal S, Gorre N, et al. Somatic cells initiate primordial follicle activation and govern the development of dormant oocytes in mice[J]. Curr Biol, 2014, 24(21): 2501-2508.
[6] Adhikari D, Zheng W, Shen Y, et al. Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles[J]. Hum Mol Genet, 2010, 19(3): 397-410.
[7] John GB, Shirley LJ, Gallardo TD, et al. Specificity of the requirement for Foxo3 in primordial follicle activation[J]. Reprod, 2007, 133(5): 855-863.
[8] Reddy P, Liu L, Adhikari D, et al. Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool[J]. Science, 2008, 319(5863): 611-613.
[9] Lechowska A, Bilinski S, Choi Y, et al. Premature ovarian failure in nobox-deficient mice is caused by defects in somatic cell invasion and germ cell cyst breakdown[J]. J Assist Reprod Genet, 2011, 28(7): 583-589.
[10] Pangas SA, Choi Y, Ballow DJ, et al. Oogenesis requires germ cell-specific transcriptional regulators Sohlh1 and Lhx8[J]. Proc Natl Acad Sci U S A, 2006, 103(21): 8090-8095.
[11] Choi Y, Yuan D, Rajkovic A. Germ cell-specific transcriptional regulator sohlh2 is essential for early mouse folliculogenesis and oocyte-specific gene expression[J]. Biol of Reprod, 2008, 79(6): 1176-1182.
[12] Castrillon DH, Miao L, Kollipara R, et al. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a[J]. Science, 2003, 301(5630): 215-218.
[13] Schmidt D, Ovitt CE, Anlag K, et al. The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance[J]. Development, 2004, 131(4): 933-942.
[14] Nilsson EE, Skinner MK. Kit ligand and basic fibroblast growth factor interactions in the induction of ovarian primordial to primary follicle transition[J]. Mol Cell Endocrinol, 2004, 214(1-2): 19-25.
[15] Kovanci E, Rohozinski J, Simpson JL, et al. Growth differentiating factor-9 mutations may be associated with premature ovarian failure[J]. Fertil Steril, 2007, 87(1): 143-146.
[16] Cavallari DCF, Coelho CMH, Verde LCL. Role of growth differentiation factor 9 and bone morphogenetic protein 15 in ovarian function and their importance in mammalian female fertility-A review[J]. Asian-Australas J Anim Sci, 2016, 29(8): 1065-1074.
[17] Adhikari D, Zheng W, Shen Y, et al. Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles[J]. Hum Mol Genet, 2010, 19(3): 397-410.
[18] Adhikari D, Flohr G, Gorre N, et al. Disruption of Tsc2 in oocytes leads to overactivation of the entire pool of primordial follicles[J]. Mol Hum Reprod, 2009, 15(12): 765-770.
[19] Jiang ZZ, Hu MW, Ma XS, et al. LKB1 acts as a critical gatekeeper of ovarian primordial follicle pool[J]. Oncotarget, 2016, 7(5): 5738-5753.
[20] Ren Y, Suzuki H, Jagarlamudi K, et al. Lhx8 regulates primordial follicle activation and postnatal folliculogenesis[J]. BMC Biol, 2015, 13: 39.
[21] Choi Y, Ballow DJ, Xin Y, et al. Lim Homeobox Gene, Lhx8, is essential for mouse oocyte differentiation and survival[J]. Biol Reprod, 2008, 79(3): 442-449.
[22] Zhang H, Liu K. Cellular and molecular regulation of the activation of mammalian primordial follicles: somatic cells initiate follicle activation in adulthood[J]. Hum Reprod Update, 2015, 21(6):779-786.
[23] Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism[J]. Cell, 2006, 124(3): 471-484.
[24] Laplante M, Sabattini DM. mTOR signaling at a glance[J]. J Cell Sci, 2009, 122(20):3589-3594.
[25] Motro B, Bernstein A. Dynamic changes in ovarian c-kit and Steel expression during the estrous reproductive cycle[J]. Dev Dyn, 1993, 197(1): 69-79.
[26] Jagarlamudi K, Liu L, Adhikari D, et al. Oocyte-specific deletion of Pten in mice reveals a stage-specific function of PTEN/PI3K signaling in oocytes in controlling follicular activation[J]. PLoS One, 2009, 4(7): 6186. doi:10.1371/journal.pone.0006186.
[27] Kaldis P. Another piece of the p27Kip1 puzzle[J]. Cell, 2007, 128(2): 241-244.
[28] Fero ML, Rivkin M, Tasch M, et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice[J]. Cell, 1996, 85(5): 733-744.
[29] Nakayama K, Ishida N, Shirane M, et al. Mice lacking p27(Kip1)display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors[J]. Cell, 1996, 85(5): 707-720.
[30] Rajareddy S, Reddy P, Du C, et al. p27kip1(cyclin-dependent kinase inhibitor 1B)controls ovarian development by suppressing follicle endowment and activation and promoting follicle atresia in mice[J]. Mol endocrinol, 2007, 21(9): 2189-2202.
[31] Adhikari D, Liu K. Molecular mechanisms underlying the activation of mammalian primordial follicles[J]. Endocr Rev, 2009, 30(5): 438-464.
[32] Hezel AF, Bardeesy N. LKB1; linking cell structure and tumor suppression[J]. Oncogene, 2008, 27(55): 6908-6919.
[33] Hemminki A, Avizienyte E, Roth S, et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome[J]. Duodecim, 1998, 114(7): 667-668.
[34] Shackelford DB, Shaw RJ. The LKB1-AMPK pathway: metabolism and growth control in tumor suppression[J]. Nat Rev Cancer, 2009, 9(8): 563-575.
[35] Lu X, Guo S, Cheng Y, et al. Stimulation of ovarian follicle growth after AMPK inhibition[J]. Reproduction, 2017, 153(5): 683-694.
[36] Ballow DJ, Xin Y, Choi Y, et al. Sohlh2 is a germ cell-specific bHLH transcription factor[J]. Gene Expr Patterns, 2006, 6(8): 1014-1018.
[37] Pangas SA, Rajkovic A. Transcriptional regulation of early oogenesis: in search of masters[J]. Hum Reprod Update, 2006, 12(1): 65-76.
[38] Toyoda S, Miyazaki T, Miyazaki S, et al. Sohlh2 affects differentiation of KIT positive oocytes and spermatogonia[J]. Dev Biol, 2009, 325(1): 238-248.
[39] Kitanaka J, Takemura M, Matsumoto K, et al. Structure and chromosomal localization of a murine LIM/homeobox gene, Lhx8[J]. Genomics, 1998, 49(2): 307-309.
[40] Mazaud S, Oréal E, Guigon CJ, et al. Lhx9 expression during gonadal morphogenesis as related to the state of cell differentiation[J]. Gene Expr Patterns, 2002, 2(3-4): 373-377.
[41] Qin Y, Zhao H, Kovanci E, et al. LHX8 mutation analysis in premature ovarian failure[J]. Fertil Steril, 2008, 89(4): 1012-1014.
[42] Rajkovic A, Pangas SA, Ballow D, et al. NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression[J]. Science, 2004, 305(5687): 1157-1159.
[43] Choi Y, Qin Y, Berger MF, et al. Microarray analyses of newborn mouse ovaries lacking Nobox[J]. Biol of Reprod, 2007, 77(2): 312-319.
[44] Liu L, Rajareddy S, Reddy P, et al. Infertility caused by retardation of follicular development in mice with oocyte-specific expression of Foxo3a[J]. Development, 2007, 134(1): 199-209.
[45] John GB, Gallardo TD, Shirley LJ, et al. Foxo3 is a PI3K-dependent molecular switch controlling the initiation of oocyte growth[J]. Dev Biol, 2008, 321(1):197-204.
[46] Oley C, Baraitser M. Blepharophimosis, ptosis, epicanthus inversus syndrome(BPES syndrome)[J]. J Med Genet, 1988, 25(1): 47-51.
[47] Ottolenghi C, Omari S, Garciaortiz JE, et al. Foxl2 is required for commitment to ovary differentiation[J]. Hum Mol Genet, 2005, 14(14): 2053-2062.
[48] Uda M, Ottolenghi C, Crisponi L, et al. Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development[J]. Hum Mol Genet, 2004, 13(11): 1171-1181.
[49] Reddy P, Adhikari D, Zheng W, et al. PDK1 signaling in oocytes controls reproductive aging and lifespan by manipulating the survival of primordial follicles[J]. Hum Mol Genet, 2009, 18(15): 2813-2824.
[50] Yu C, Zhang YL, Pan WW, et al. CRL4 complex regulates mammalian oocyte survival and reprogramming by activation of TET proteins[J]. Science, 2013, 342(6165): 1518-1521.
[51] Nilsson E, Parrott JA, Skinner MK. Basic fibroblast growth factor induces primordial follicle development and initiates folliculogenesis[J]. Mol Cell Endocrinol, 2001, 175(1-2): 123-130.
[52] Durlinger AL, Gruijters MJ, Kramer P, et al. Anti-Müllerian hormone inhibits initiation of primordial follicle growth in the mouse ovary[J]. Endocrinology, 2002, 143(3): 1076-1084.
[53] Buratini J, Price CA. Follicular somatic cell factors and follicle development[J]. Reprod Fertil Dev, 2011, 23(1): 32-39.
[54] Henderson SA, Edwards RG. Chiasma frequency and maternal age in mammals[J]. Nature, 1968, 218(5136): 22-28.
[55] Byskov AG, Guoliang X, Andersen CY. The cortex-medulla oocyte growth pattern is organized during fetal life: an in-vitro study of the mouse ovary[J]. Mol Hum Reprod, 1997, 3(9): 795-800.
[56] Zheng W, Zhang H, Gorre N, et al. Two classes of ovarian primordial follicles exhibit distinct developmental dynamics and physiological functions[J]. Hum Mol Genet, 2014, 23(4): 920-928.
[57] Zheng W, Zhang H, Liu K. The two classes of primordial follicles in the mouse ovary: their development, physiological functions and implications for future research[J]. Mol Hum Reprod, 2014, 20(4): 286-296.
[58] Broekmans FJ, Knauff EA, Valkenburg O, et al. PCOS according to the Rotterdam consensus criteria: Change in prevalence among WHO-II anovulation and association with metabolic factors[J]. BJOG, 2006, 113(10): 1210-1217.
[59] Qin Y, Jiao X, Simpson JL, et al. Genetics of primary ovarian insufficiency: new developments and opportunities[J]. Hum Reprod Update, 2015, 21(6): 787-808.
[60] Li J, Kawamura K, Cheng Y, et al. Activation of dormant ovarian follicles to generate mature eggs[J]. Proc Natl Acad Sci U S A, 2010, 107(22): 10280-10284.
[61] Taga M, Mouton-Liger F, Paquet C, et al. Modulation of oxidative stress and tau phosphorylation by the mTOR activator phosphatidic acid in SH-SY5Y cells[J]. Febs Letters, 2011, 585(12): 1801-1806.
[62] Frondorf K, Henkels KM, Frohman MA, et al. Phosphatidic acid is a leukocyte chemoattractant that acts through S6 kinase signaling[J]. J Biol Chem, 2010, 285(21): 15837-15847.
[63] Hornberger TA, Chu WK, Mak YW, et al. The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle[J]. Proc Natl Acad Sci U S A, 2006, 103(12): 4741-4746.
[64] Xinhui S, Yiping S, Yuanlin H, et al. New strategy for in vitro activation of primordial follicles with mTOR and PI3K stimulators[J]. Cell Cycle, 2015, 14(5): 721-731.
[65] Farquhar C, Lilford RJ, Marjoribanks J, et al. Laparoscopic "drilling" by diathermy or laser for ovulation induction in anovulatory polycystic ovary syndrome[J]. Cochrane Database Syst Rev, 2005, 3(3): 1122.
[66] Kawamura K, Cheng Y, Suzuki N, et al. Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment[J]. Proc Natl Acad Sci U S A, 2013, 110(43): 17474-17479.
[67] Pan D. Hippo signaling in organ size control[J]. Gene Dev, 2007, 21(8): 886-897.
[68] Halder G, Johnson RL. Hippo signaling: growth control and beyond[J]. Development, 2011, 138(1): 9-22.
[69] Hergovich A. Mammalian Hippo signalling: a kinase network regulated by protein-protein interactions[J]. Biochem Soc Trans, 2012, 40(1): 124-128.
[70] Johnson R, Halder G. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment[J]. Nat Rev Drug Discov, 2014, 13(1): 63-79.
[71] Wada K, Itoga K, Okano T, et al. Hippo pathway regulation by cell morphology and stress fibers[J]. Development, 2011, 138(18): 3907-3914.
[72] Cheng Y, Feng Y, Jansson L, et al. Actin polymerization-enhancing drugs promote ovarian follicle growth mediated by the Hippo signaling effector YAP[J]. FASEB J, 2015, 29(6): 2423-2430.
[73] Hikabe O, Hamazaki N, Nagamatsu G, et al. Reconstitution in vitro of the entire cycle of the mouse female germ line[J]. Nature, 2016, 539(7628): 299-303.
[1] ZOU Pinheng, CHEN Tianguo, HU Kang, LI Weicai. Effects and mechanism of overexpression of miR-27a on hippocampal neuronal injury in rats with acute cerebral infarction [J]. Journal of Shandong University (Health Sciences), 2022, 60(9): 59-66.
[2] ZHANG Bingfen, ZHOU Shenghong, WANG Zhe. Trillium Saponins ameliorates pulmonary fibrosis in rats by inhibiting TGF-β/Smad3 and Wnt/β-catenin signaling pathways [J]. Journal of Shandong University (Health Sciences), 2022, 60(8): 23-29.
[3] XIANG Yujiao, LIU Qiang, LIU Lu, SHI Yan. Mechanism of abnormal immune response of dendritic cells in immune thrombocytopenia [J]. Journal of Shandong University (Health Sciences), 2022, 60(7): 89-97.
[4] HU Na, SUN Miao, XING Shasha, XU Danxia, HAI Xiaoming, MA Ling, YANG Li, MIAN Yuchen, HE Rui, CHEN Dongmei, MA Huiming. Evening primrose oil resists oxidative stress in the ovaries of rats with polycystic ovary syndrome [J]. Journal of Shandong University (Health Sciences), 2022, 60(5): 22-30.
[5] Fang WANG,Hua CHEN,Lihong SHANG,Ruyue LI,Yongmei LI,Yu, e YANG,Chunfang HA. Effects of U0126 on MEK/ERK/NF-κB pathway, proliferation and invasion in rats with endometriosis [J]. Journal of Shandong University (Health Sciences), 2021, 59(9): 148-154.
[6] LU You, QIE Di, WU Jinhui, YANG Fan. Effects of the intervention of Sonic Hedgehog signaling pathway on learning and memory ability in rats with intrauterine growth restriction [J]. Journal of Shandong University (Health Sciences), 2021, 59(5): 82-89.
[7] LUO Huichen, HU Danhui, ZHANG Ji. Effect of miR-203-3p targeted TREM1 gene on the regulation of TGF-β1/p38MAPK signaling pathway on the proliferation and apoptosis of renal tubular epithelial cells in lupus nephritis mice [J]. Journal of Shandong University (Health Sciences), 2021, 59(3): 18-25.
[8] ZHANG Xiaolu, WANG Lili, CHEN Kaiming, LOU Xianzhi, ZHANG Man. Mechanism of histone deacetylase SIRT1 inhibiting macrophages apoptosis via TLR4 signaling pathway [J]. Journal of Shandong University (Health Sciences), 2020, 58(12): 8-14.
[9] HONG Jiageng, NIE Yangyang, SU Guoqiang. Effects of propofol on proliferation, migration and expressions of Wnt1 and β-catenin in colon cancer cells [J]. Journal of Shandong University (Health Sciences), 2020, 58(11): 53-58.
[10] DENG Ke, LIU Yi, GAI Zhongtao. Susceptibility of mesenchymal stem cells to enterovirus 71 and differential expression of miRNA [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(3): 25-31.
[11] KONG Degang, WANG Lili, ZHOU Honglei, REN Dongmei, LOU Hongxiang, SHEN Tao. Juices of cherry and strawberry confer protection of human bronchial epithelial cells against arsenic-induced toxicity via activation of Nrf2 signaling pathway [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2014, 52(9): 20-25.
[12] LI Shan-shan, SUN Ying, DING Huan, LI Li. β-catenin expressions in different subtypes of breast cancer and its clinical significance [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2013, 51(3): 107-110.
[13] ZHU Yu-guang, WANG Jie, ZHU Yan, ZHONG Ying-ying, DU Xiao-nan, ZHANG Rong. Role of the NF-κB signaling pathway mediated by oxidative stress in
 extracelluar matrix  remodeling of  trabecular  meshwork - cells
[J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2012, 50(5): 51-.
[14] DING Ping-ping, LI Qiang. Mechanisms involved in lysophosphatidic acid inducing  proliferation of ovarian carcinoma cells [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2011, 49(7): 35-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!