Journal of Shandong University (Health Sciences) ›› 2024, Vol. 62 ›› Issue (12): 1-10.doi: 10.6040/j.issn.1671-7554.0.2024.0846

• Clinical Pharmaceutical Research and Evaluation •    

Comparison of the therapeutic effect of SYN008 with Xolair® in allergic asthma mice: inflammation and remodeling

XU Xinjun1*, SHAO Liting1*, CHEN Ying2, LIU Huifang2, YANG Yujuan1, ZHANG Yu1, WANG Hanrui1, SONG Xicheng1   

  1. 1. Yantai Yuhuangding Hospital, Qingdao University, Yantai 264000, Shandong, China;
    2. The second Medical College of Binzhou Medical University, Yantai 264000, Shandong, China
  • Published:2024-12-09

Abstract: Objective To compare the efficacy of omalizumab analogue(SYN008)with omalizumab original drug(Xolair®)in allergic asthma mice model, providing a basis for the clinical application of SYN008. Methods Forty healthy BALB/c mice were divided into four groups, with 10 mice in each. Group I was the control group and asthma was induced by intraperitoneal injection of ovalbumin(OVA)-aluminium hydroxide in groups Ⅱ-Ⅳ. Mice in groups Ⅲ and Ⅳ were treated with Xolair®(200 μg/each)and SYN008(200 μg/each)intraperitoneally, respectively. The levels of IgE in serum and T helper 2 cell(Th2)cytokines in broncho alveolar lavage fluid(BALF)were detected in each group; lung tissues were observed by hematoxylin-eosin(HE)staining, peroxynitrite-schiff(PAS)staining and Massons trichrome(Masson)staining. For the expression of transforming growth factor beta 1(TGF-β1), phosphorylated Smad family member 3(P-smad3)/Smad family member 3(Smad3), collagen Ⅲ(COL3)and mucin 5AC(MUC5AC), lung tissues were examined by quantitative real-time PCR(RT-qPCR), enzyme linked immunosorbent assay(ELISA), western blotting(WB)and immunohistochemistry. Results The levels of IgE in serum and interleukin-4(IL-4), IL-5 and IL-13 in BALF were significantly increased in the group Ⅱ compared with those in the control group(all P<0.001). The levels of IgE in serum and IL-4/5/13 in BALF in groups Ⅲ and Ⅳ were significantly decreased compared with those in the group Ⅱ(P<0.001, P<0.05, P<0.01, P<0.05; P<0.001, P<0.05, P<0.05, P<0.05). HE, PAS and Masson staining confirmed that Xolair® and SYN008 could effectively reduce inflammatory cell aggregation, airway cuprocyte chemotaxis and collagen deposition in mice with asthma. Xolair® and SYN008 could attenuate airway remodeling by inhibiting TGF-β1, P-smad3/Smad3, COL3 and MUC5AC in lung tissues, with no reach statistical significance between the two groups in all the assays. Conclusion SYN008 improves allergic asthma in mice and is consistent with the efficacy of Xolair®, which is expected to be clinically significant for allergic asthma in the future.

Key words: Omalizumab analogue(SYN008), Omalizumab original drug(Xolair®, ), Allergic asthma, Inflammation, Remodeling

CLC Number: 

  • R562.2
[1] Patadia R, Casale TB, Fowler J, et al. Advancements in biologic therapy in eosinophilic asthma[J]. Expert Opin Biol Ther, 2024, 24(4): 251-261.
[2] Hammad H, Lambrecht BN. The basic immunology of asthma[J]. Cell, 2021, 184(6): 1469-1485.
[3] 张韵秋,任秀敏,徐鸥,等.奥马珠单抗靶向治疗慢性鼻窦炎伴鼻息肉的研究进展[J/OL].山东大学耳鼻喉眼学报,1-9[2024-10-02]. http://kns.cnki.net/kcms/detail/37.1437.R.20240408.1519.006.html. ZHANG Yunqiu, REN Xiumin, XU Ou, et al. Research progress on omalizumab targeted therapy for chronic sinusitis with nasal polyps[J]. Journal of Otolaryngology and Ophthalmology of Shandong University,1-9[2024-10-02]. http://kns.cnki.net/kcms/detail/37.1437.R.20240408.1519.006.html.
[4] Grzela K, Litwiniuk M, Zagorska W, et al. Airway remodeling in chronic obstructive pulmonary disease and asthma: the role of matrix metalloproteinase-9[J]. Arch Immunol Ther Exp, 2016, 64(1): 47-55.
[5] Savin IA, Zenkova MA, Senkova AV. Bronchial asthma, airway remodeling and lung fibrosis as successive steps of one process[J]. Int J Mol Sci, 2023, 24(22): 16042. doi:10.3390/ijms242216042.
[6] Niespodziana K, Borochova K, Pazderova P, et al. Toward personalization of asthma treatment according to trigger factors[J]. J Allergy Clin Immunol, 2020, 145(6): 1529-1534.
[7] Chase NM, Littlejohn M, Holweg CTJ, et al. Effectiveness of omalizumab across different dosing regimens in patients with moderate-to-severe allergic asthma[J]. Respir Med, 2024, 223: 107537. doi:10.1016/j.rmed.2024.107537.
[8] Liao JY, Tang J, Jiang YP, et al. Effects of omalizumab on lung function in patients with moderate-to-severe allergic asthma: a systematic review and meta-analysis[J]. Ther Adv Respir Dis, 2024, 18: 17534666231221771. doi:10.1177/17534666231221771.
[9] Qin ZW, Chen YJ, Liu N, et al. Mechanisms of Bushenyiqi Decoction in the treatment of asthma: an investigation based on network pharmacology with experimental validation[J]. Front Pharmacol, 2024, 15: 1361379. doi:10.3389/fphar.2024.1361379.
[10] 王瑞茵, 李红雯, 张清, 等. 青蒿琥酯对哮喘小鼠气道反应性和气道炎症的影响[J]. 中华医学杂志, 2019, 99(32): 2536-2541. WANG Ruiyin, LI Hongwen, ZHANG Qing, et al. Effect of artesunate on airway responsiveness and airway inflammation in asthmatic mice[J]. National Medical Journal of China, 2019, 99(32): 2536-2541.
[11] 孙丛丛,崔文静,张锦涛,等.铁死亡在支气管哮喘气道重塑中的作用[J].山东大学学报(医学版), 2024, 62(7): 1-9. SUN Congcong, CUI Wenjing, ZHANG Jintao, et al. Roles of ferroptosis in asthmatic airway remodeling[J]. Journal of Shandong University(Health Sciences), 2024, 62(7): 1-9.
[12] 张越,佟训靓,李艳,等.奥马珠单抗对过敏性哮喘小鼠气道重塑的影响[J].临床药物治疗杂志, 2022, 20(7): 40-45. ZHANG Yue, TONG Xunliang, LI Yan, et al. Effects of Omalizumab on airway remodeling in allergic asthma mouse[J]. Clinical Medication Journal, 2022, 20(7): 40-45.
[13] Ren C, Mou YK, Song XY, et al. P2X7 receptor of microglia in olfactory bulb mediates the pathogenesis of olfactory dysfunction in a mouse model of allergic rhinitis[J]. Faseb J, 2023, 37(6): e22955. doi:10.1096/fj.202300160RR.
[14] Zhang FQ, Han XP, Zhang F, et al. Therapeutic efficacy of a co-blockade of IL-13 and IL-25 on airway inflammation and remodeling in a mouse model of asthma[J]. Int Immunopharmacol, 2017, 46: 133-140. doi:10.1016/j.intimp.2017.03.005.
[15] Zhang MY, Lin JT, Zhang JY, et al. Artesunate inhibits airway remodeling in asthma via the MAPK signaling pathway[J]. Front Pharmacol, 2023, 14: 1145188. doi:10.3389/fphar.2023.1145188.
[16] Ma WX, Jin QY, Guo HQ, et al. Metformin ameliorates inflammation and airway remodeling of experimental allergic asthma in mice by restoring AMPKα activity[J]. Front Pharmacol, 2022, 13: 780148. doi:10.3389/fphar.2022.780148.
[17] Sardon-Prado O, Diaz-Garcia C, Corcuera-Elosegui P, et al. Severe asthma and biological therapies: now and the future[J]. J Clin Med, 2023, 12(18): 5846. doi:10.3390/jcm12185846.
[18] 奥马珠单抗治疗过敏性哮喘专家组,中华医学会呼吸病学分会哮喘学组.奥马珠单抗治疗过敏性哮喘的中国专家共识[J]. 中华结核和呼吸杂志, 2018, 41(3):179-185.
[19] Vignola AM, Humbert M, Bousquet J, et al. Efficacy and tolerability of anti-immunoglobulin E therapy with omalizumab in patients with concomitant allergic asthma and persistent allergic rhinitis: solar[J]. Allergy, 2004, 59(7): 709-717.
[20] Velling P, Skowasch D, Pabst S, et al. Improvement of quality of life in patients with concomitant allergic asthma and atopic dermatitis: one year follow-up of omalizumab therapy[J]. Eur J Med Res, 2011, 16(9): 407-410.
[21] Kraik K, Tota M, Laska J, et al. The role of transforming growth factor-β(TGF-β)in asthma and chronic obstructive pulmonary disease(COPD)[J]. Cells, 2024, 13(15): 1271. doi:10.3390/cells13151271.
[22] Eggel A, Pennington LF, Jardetzky TS. Therapeutic monoclonal antibodies in allergy: targeting IgE, cytokine, and alarmin pathways[J]. Immunol Rev, 2024:19. doi:10.1111/imr.13380.
[23] Pelaia G, Gallelli L, Renda T, et al. Update on optimal use of omalizumab in management of asthma[J]. J Asthma Allergy, 2011, 4: 49-59. doi:10.2147/JAA.S14520.
[24] Cilli A, Uzer F, Ozbey G. Clinical remission maintained and improved over time in patients with severe asthma treated with omalizumab[J]. J Asthma, 2024, 61(11): 1469-1476.
[25] Ghanei M, Ghalebaghi B, Sami R, et al. Efficacy and safety of a proposed omalizumab biosimilar compared to the reference product in the management of uncontrolled moderate-to-severe allergic asthma: a multicenter, phase III, randomized, double-blind, equivalency clinical trial[J]. Front Immunol, 2024, 15: 1425906. doi:10.3389/fimmu.2024.1425906.
[26] Long C, Sun CH, Lin H, et al. Efficacy and safety of subcutaneous immunotherapy combined with omalizumab in children with dust mite-induced asthma[J]. J Asthma, 2024, 61(11): 1561-15670.
[27] 柳杉杉,申昆玲. 从IgE发现到抗IgE抗体产生看哮喘的生物治疗趋势[J]. 中华实用儿科临床杂志, 2021, 36(12): 902-907. LIU Shanshan, SHEN Kunling. Biotherapy trends in asthma: from the discovery of IgE to anti-IgE antibody production[J]. Chinese Journal of Applied Clinical Pediatrics, 2021, 36(12): 902-907.
[28] Yan HC, Sun L, Ni YM, et al. Effective omalizumab treatment influenced eosinophil function in severe allergic asthmatics[J]. J Thorac Dis, 2023, 15(6): 3115-3125.
[29] Couillard S, Jackson DJ, Pavord ID, et al. Choosing the right biologic for the right patient with severe asthma[J]. Chest, 2024, 6: S0012-3692(24)05139-0. doi:10.1016/j.chest.2024.08.045.
[30] 杨文平,李刚,亓玉心,等.奥马珠单抗对支气管哮喘大鼠肺功能及气道重塑的影响及机制研究[J].中国现代医学杂志, 2023, 33(14): 16-21. YANG Wenping, LI Gang, QI Yuxin, et al. Effects of omalizumab on pulmonary function and airway remodeling in asthmatic rats and the underlying mechanisms[J]. China Journal of Modern Medicine, 2023, 33(14): 16-21.
[31] 周进,王文杰,丁静,等.荆僵白果膏联合奥马珠单抗治疗老年支气管哮喘患者的效果及其对气道重塑和气道炎症的影响[J].实用心脑肺血管病杂志, 2024, 32(7): 101-105. ZHOU Jin, WANG Wenjie, DING Jing, et al. Effect of jingjiang baiguo ointment combined with omacizumab in the treatment of elderly patients with bronchial asthma and its impact on airway remodeling and airway inflammation[J]. Practical Journal of Cardiac Cerebral Pneumal and Vascular Disease, 2024, 32(7): 101-105.
[32] Song YL, Wang ZG, Jiang JZ, et al. DEK-targeting aptamer DTA-64 attenuates bronchial EMT-mediated airway remodelling by suppressing TGF-β1/Smad, MAPK and PI3K signalling pathway in asthma[J]. J Cell Mol Med, 2020, 24(23): 13739-13750.
[33] 蔡秋景,张倩,何学佳,等.气道平滑肌细胞通过TGF-β1/Smad3信号通路调节IL-33的表达参与哮喘[J].山东大学学报(医学版), 2020, 58(4): 78-83. CAI Qiujing, ZHANG Qian, HE Xuejia, et al. Airway smooth muscle cells regulate IL-33 expression through TGF-β1/Smad3 signaling pathway to participate in asthma[J]. Journal of Shandong University(Health Sciences), 2020, 58(4): 78-83.
[34] Peng HY, Sun F, Jiang YX, et al. Semaphorin 7a aggravates TGF-β1-induced airway EMT through the FAK/ERK1/2 signaling pathway in asthma[J]. Front Immunol, 2023, 14: 1167605. doi:10.3389/fimmu.2023.1167605.
[35] Wang YB, Yang HK, Su X, et al. TGF-β1/SMOC2/AKT and ERK axis regulates proliferation, migration, and fibroblast to myofibroblast transformation in lung fibroblast, contributing with the asthma progression[J]. Hereditas, 2021, 158(1): 47. doi:10.1186/s41065-021-00213-w.
[36] Muhamad SA, Safuan S, Stanslas J, et al. Lignosus rhinocerotis extract ameliorates airway inflammation and remodelling via attenuation of TGF-β1 and Activin A in a prolonged induced allergic asthma model[J]. Sci Rep, 2023, 13(1): 18442. doi:10.1038/s41598-023-45640-z.
[37] Fang YN, Jin WW, Guo Z, et al. Quercetin alleviates asthma-induced airway inflammation and remodeling through downregulating periostin via blocking TGF-β1/smad pathway[J]. Pharmacology, 2023, 108(5): 432-443.
[38] Janulaityte I, Januskevicius A, Kalinauskaite-Zukauske V, et al. In vivo allergen-activated eosinophils promote collagen I and fibronectin gene expression in airway smooth muscle cells via TGF-β1 signaling pathway in asthma[J]. Int J Mol Sci, 2020, 21(5): 1837. doi:10.3390/ijms21051837.
[39] Wu HY, Wang D, Shi H, et al. PM2.5 and water-soluble components induce airway fibrosis through TGF-β1/Smad3 signaling pathway in asthmatic rats[J]. Mol Immunol, 2021, 137: 1-10. doi:10.1016/j.molimm.2021.06.005.
[40] He HJ, Cao LH, Wang Z, et al. Sinomenine relieves airway remodeling by inhibiting epithelial-mesenchymal transition through downregulating TGF-β1 and Smad3 expression in vitro and in vivo[J]. Front Immunol, 2021, 12: 736479. doi:10.3389/fimmu.2021.736479.
[41] Bonser LR, Erle DJ. Airway mucus and asthma: the role of MUC5AC and MUC5B[J]. J Clin Med, 2017, 6(12): 112. doi:10.3390/jcm6120112.
[42] Boomer J, Choi J, Alsup A, et al. Increased Muc5AC and decreased ciliated cells in severe asthma partially restored by inhibition of IL-4Rα receptor[J]. Am J Respir Crit Care Med, 2024: 27. doi:10.1164/rccm.202307-1266OC.
[43] Jia ZR, Bao KF, Wei P, et al. EGFR activation-induced decreases in claudin1 promote MUC5AC expression and exacerbate asthma in mice[J]. Mucosal Immunol, 2021, 14(1): 125-134.
[44] Dai JH, Ma B, Wen XL, et al. Upregulation of miR-92a contributes to blocking goblet cell metaplasia by targeting MUC5AC in asthma[J]. J Recept Signal Transduct, 2020, 40(6): 613-619.
[45] Gao QQ, Feng CR, Shi Q, et al. Guishaozichuan granules can attenuate asthma in rats via the MUC5AC/EGFR signaling pathway[J].Front Pharmacol, 2022, 13: 1011751. doi:10.3389/fphar.2022.1011751.
[46] Zuberbier T, Ensina LF, Giménez-Arnau A, et al. Chronic urticaria: unmet needs, emerging drugs, and new perspectives on personalised treatment[J]. Lancet, 2024, 404(10450): 393-404.
[47] Anagnostou A, Greenhawt M, Shaker M, et al. Food allergy yardstick: where does omalizumab fit?[J]. Ann Allergy Asthma Immunol, 2024: S1081-S1206(24)00494-0. doi:10.1016/j.anai.2024.07.034.
[48] Halken S, Larenas-Linnemann D, Roberts G, et al. EAACI guidelines on allergen immunotherapy: prevention of allergy[J]. Pediatr Allergy Immunol, 2017, 28(8): 728-745.
[49] Gasser P, Tarchevskaya SS, Guntern P, et al. The mechanistic and functional profile of the therapeutic anti-IgE antibody ligelizumab differs from omalizumab[J]. Nat Commun, 2020, 11(1): 165. doi:10.1038/s41467-019-13815-w.
[50] Maurer M, Saini SS, McLendon K, et al. Pharmacokinetic equivalence of CT-P39 and reference omalizumab in healthy individuals: a randomised, double-blind, parallel-group, Phase 1 trial[J]. Clin Transl Allergy, 2022, 12(11): e12204. doi:10.1002/clt2.12204.
[51] Zhou B, Lin BR, Li J, et al. Tolerability, pharmacokinetics and pharmacodynamics of CMAB007, a humanized anti-immunoglobulin E monoclonal antibody, in healthy Chinese subjects[J]. MAbs, 2012, 4(1): 110-119.
[52] Namakanova OA, Gorshkova EA, Zvartsev RV, et al. Therapeutic potential of combining IL-6 and TNF blockade in a mouse model of allergic asthma[J]. Int J Mol Sci, 2022, 23(7): 3521. doi:10.3390/ijms23073521.
[53] Mahmutovic Persson I, Menzel M, Ramu S, et al. IL-1β mediates lung neutrophilia and IL-33 expression in a mouse model of viral-induced asthma exacerbation[J]. Respir Res, 2018, 19(1): 16. doi:10.1186/s12931-018-0725-z.
[1] XU Ning-Yu, WANG Lei, HAO En-Kui, SU Guo-Hai. Effects of atorvastatin given before acute PCI on inflammatory mediators and left ventricular function in STEMI [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2209, 47(6): 69-72.
[2] HAO Yue-Wei, LIU Xue-Ping, ZHAO Ting-Ting, ZHENG Min, WANG Yi-Bing. Relationship between the COX-2 gene polymorphisms and atherothrombotic ischemic stroke [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2209, 47(6): 95-98.
[3] LIU Shaoting, ZHANG Weiwei, RAN Qian, WANG Jian. Dietary emulsifiers and intestinal health [J]. Journal of Shandong University (Health Sciences), 2024, 62(8): 18-26.
[4] SUN Congcong, CUI Wenjing, ZHANG Jintao, ZHANG Dong, LIU Xiaofei, PAN Yun, QI Qian, XU Jiawei, ZENG Rong, GUO Hongxi, DONG Liang. Roles of ferroptosis in asthmatic airway remodeling [J]. Journal of Shandong University (Health Sciences), 2024, 62(7): 1-9.
[5] SUN Lina, BAI Hongyan, NIU Zongge, ZHANG Fushuai, QU Yiqing. Construction and evaluation of an online clinical risk model for predicting in-hospital mortality in patients with ARDS based on SII [J]. Journal of Shandong University (Health Sciences), 2024, 62(7): 10-20.
[6] TIAN Lijun, SANG Yujie, SUN Yujing, HAN Bing, QIN Chengyong, QI Jianni. The predictive value of systemic immune-inflammation index for immune checkpoint inhibitor treatment-related adverse reactions in patients with primary liver cancer [J]. Journal of Shandong University (Health Sciences), 2024, 62(6): 48-53.
[7] SHEN Haitao, QIAO Yaqin, DONG Ping, LU Yan. Effects of programmed necrosis and ferroptosis regulated by toll-like receptor 4 on acetaminophen-induced liver injury [J]. Journal of Shandong University (Health Sciences), 2024, 62(4): 1-8.
[8] YANG Xiaozhe, ZHAO Yan, QING Hui, WANG Xiangdong, ZHANG Luo. PM2.5 induces inflammatory response in nasal epithelial cells through TLR4/NF-κB pathway [J]. Journal of Shandong University (Health Sciences), 2023, 61(9): 47-55.
[9] LIU Jinbo, LIU Kaiwen, XIANG Chongxin, CHENG Lei. Protective effects of crocin on intervertebral disc degeneration [J]. Journal of Shandong University (Health Sciences), 2023, 61(9): 84-93.
[10] BU Meiling, WANG Jinrong, FENG Mei, SUN Lifeng. Mechanism of FOXM1 in acute exacerbation of asthma induced by respiratory virus infection in mice [J]. Journal of Shandong University (Health Sciences), 2023, 61(6): 1-9.
[11] ZHAO Yuanyuan, LU Juntao, WU Xiaohua. Effects of human umbilical cord mesenchymal stem cell-derived exosomal miR-100 on inflammation of ovarian granulosa cells in polycystic ovary syndrome [J]. Journal of Shandong University (Health Sciences), 2023, 61(5): 51-58.
[12] WANG Zhenhua, SONG Han,WEI Duoliang, LI Bowen, XU Kai, FANG Changcun, ZHAO Xin. Early remodeling of the proximal aorta after Castor single-branched stent-graft implantation for acute type B aortic dissection [J]. Journal of Shandong University (Health Sciences), 2023, 61(2): 36-42.
[13] ZHANG Bingfen, ZHOU Shenghong, WANG Zhe. Trillium Saponins ameliorates pulmonary fibrosis in rats by inhibiting TGF-β/Smad3 and Wnt/β-catenin signaling pathways [J]. Journal of Shandong University (Health Sciences), 2022, 60(8): 23-29.
[14] LI Rui, SHI Cunxian, YU Cuicui. Effects of dexmedetomidine on intestinal-related injury during cardiopulmonary bypass [J]. Journal of Shandong University (Health Sciences), 2022, 60(7): 83-88.
[15] LIU Yan, ZHANG Man, JIANG Chaoyang, BIAN Shu, DU Aijia, CHEN He. LncRNA-HOTAIR regulates migration of macrophages via H3K27me3 pathway [J]. Journal of Shandong University (Health Sciences), 2022, 60(6): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!