Journal of Shandong University (Health Sciences) ›› 2025, Vol. 63 ›› Issue (12): 118-124.doi: 10.6040/j.issn.1671-7554.0.2025.0340
• Review • Previous Articles
QI Zaiwen1, BAI Xiao2, QIN Yuan3
CLC Number:
| [1] Persson J, Yan J, Angerås O, et al. PCI or CABG for left main coronary artery disease: the SWEDEHEART registry[J]. Eur Heart J, 2023, 44(30): 2833-2842. [2] Gaudino M, Benedetto U, Fremes S, et al. Radial-artery or saphenous-vein grafts in coronary-artery bypass surgery[J]. N Engl J Med, 2018, 378(22): 2069-2077. [3] Xenogiannis I, Zenati M, Bhatt DL, et al. Saphenous vein graft failure: from pathophysiology to prevention and treatment strategies[J]. Circulation, 2021, 144(9): 728-745. [4] Zhou Y, Sharma S, Sun X, et al. SMYD2 regulates vascular smooth muscle cell phenotypic switching and intimal hyperplasia via interaction with myocardin [J]. Cell Mol Life Sci, 2023, 80(9):264. [5] Zeng Z, Xia LX, Fan SY, et al. Circular RNA CircMAP3K5 acts as a microRNA-22-3p sponge to promote resolution of intimal hyperplasia via TET2-mediated smooth muscle cell differentiation[J]. Circulation, 2021, 143(4): 354-371. [6] 王蕾艳, 宋尚明, 张红雨, 等. 联合转染VEGF和PCNA-ASODN对血管成形术后再狭窄的影响[J]. 山东大学学报(医学版), 2011, 49(5): 38-42. WANG Leiyan, SONG Shangming, ZHANG Hongyu, et al. Effect of co-transfection of VEGF and PCNA-ASODN on restenosis after percutaneous transluminal coronary angioplasty[J]. Journal of Shandong University(Health Sciences), 2011, 49(5): 38-42. [7] McQueen LW, Ladak SS, Zakkar M. Acute shear stress and vein graft disease[J]. Int J Biochem Cell Biol, 2022, 144: 106173. doi: 10.1016/j.biocel.2022.106173 [8] 张红萍, 赵川榕, 王贵学. 血管生物力学与力学生物学研究进展[J]. 医用生物力学, 2024, 39(1): 17-23. doi: 10.16156/j.1004-7220.2024.01.003 ZHANG Hongping, ZHAO Chuanrong, WANG Guixue. Advances in vascular biomechanics and mechanobiology[J]. Journal of Medical Biomechanics, 2024, 39(1): 17-23. [9] Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape[J]. Cell, 2007, 128(4): 635-638. [10] Panni S, Lovering RC, Porras P, et al. Non-coding RNA regulatory networks[J]. Biochim Biophys Acta Gene Regul Mech, 2020, 1863(6): 194417. doi: 10.1016/j.bbagrm.2019.194417 [11] 万树威, 李震, 曹辉. 大鼠自体移植静脉差异表达microRNA及其生物信息学分析[J]. 中国普通外科杂志, 2019, 28(12): 1490-1496. WAN Shuwei, LI Zhen, CAO Hui. Differentially expressed microRNAs in rat autologous vein graft and their bioinformatics analysis[J]. Chinese Journal of General Surgery, 2019, 28(12): 1490-1496. [12] Huang K, Bao H, Yan ZQ, et al. MicroRNA-33 protects against neointimal hyperplasia induced by arterial mechanical stretch in the grafted vein [J]. Cardiovasc Res, 2017, 113(5): 488-497. [13] Cooley BC, Nevado J, Mellad J, et al. TGF-β signaling mediates endothelial-to-mesenchymal transition(EndMT)during vein graft remodeling[J]. Sci Transl Med, 2014, 6(227): 227ra34. doi: 10.1126/scitranslmed.3006927 [14] Liu JT, Liu Z, Chen Y, et al. microRNA-29a involvement in phenotypic transformation of venous smooth muscle cells via ten-eleven translocation methylcytosinedioxygenase 1 in response to mechanical cyclic stretch[J]. J Biomech Eng, 2020, 142(5): 051009. doi: 10.1115/1.4044581 [15] Pan HZ, Xue CY, Auerbach BJ, et al. Single-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human[J]. Circulation, 2020, 142(21): 2060-2075. [16] Chen L, Wei K, Li J, et al. Integrated analysis of LncRNA-mediated CeRNA network in calcific aortic valve disease[J]. Cells, 2022, 11(14): 2204. doi: 10.3390/cells11142204 [17] Liu JT, Yao QP, Chen Y, et al. Arterial cyclic stretch regulates Lamtor1 and promotes neointimal hyperplasia via circSlc8a1/miR-20a-5p axis in vein grafts[J]. Theranostics, 2022, 12(11): 4851-4865. [18] Huang ZH, Winata WA, Zhang K, et al. Reconstruction of a lncRNA-associated CeRNA network in endothelial cells under circumferential stress[J]. Cardiol Res Pract, 2020, 2020: 1481937. doi: 10.1155/2020/1481937 [19] Park SM, Lee JH, Ahn KS, et al. Cyclic stretch promotes cellular reprogramming process through cytoskeletal-nuclear mechano-coupling and epigenetic modification[J]. Adv Sci(Weinh), 2023, 10(32): e2303395. doi: 10.1002/advs.202303395 [20] Bae HJ, Shin SJ, Jo SB, et al. Cyclic stretch induced epigenetic activation of periodontal ligament cells[J]. Mater Today Bio, 2024, 26: 101050. doi: 10.1016/j.mtbio.2024.101050 [21] 段琦, 李亚峰, 王振峰. 尿毒症患者血清通过ROS- NLRP3信号通路促进人主动脉平滑肌细胞增殖参与新生内膜增生[J]. 中国分子心脏病学杂志, 2024, 24(3): 6110-6115. DUAN Qi, LI Yafeng, WANG Zhenfeng. Uremia serum promotes the proliferation of human aortic smooth muscle cells through the ROS- NLRP3 signaling pathway and participates in neointimal hyperplasia[J]. Molecular Cardiology of China, 2024, 24(3): 6110-6115. [22] Tang YJ, Jia YT, Fan LW, et al. MFN2 prevents neointimal hyperplasia in vein grafts via destabilizing PFK1[J]. Circ Res, 2022, 130(11): e26-e43. [23] Feng SD, Gao L, Zhang DH, et al. miR-93 regulates vascular smooth muscle cell proliferation, and neointimal formation through targeting Mfn2[J]. Int J Biol Sci, 2019, 15(12): 2615-2626. [24] Chang YJ, Huang HC, Hsueh YY, et al. Role of excessive autophagy induced by mechanical overload in vein graft neointima formation: prediction and prevention[J]. Sci Rep, 2016, 6: 22147. doi: 10.1038/srep22147 [25] Chen Y, Bao M, Liu JT, et al. Defective autophagy triggered by arterial cyclic stretch promotes neointimal hyperplasia in vein grafts via the p62/nrf2/slc7a11 signaling pathway[J]. J Mol Cell Cardiol, 2022, 173: 101-114. doi: 10.1016/j.yjmcc.2022.10.001 [26] Campos LC, Ribeiro-Silva JC, Menegon AS, et al. Cyclic stretch-induced Crp3 sensitizes vascular smooth muscle cells to apoptosis during vein arterialization remodeling [J]. Clin Sci, 2018, 132(4): 449-459. [27] Cicha I, Yilmaz A, Klein M, et al. Connective tissue growth factor is overexpressed in complicated atherosclerotic plaques and induces mononuclear cell chemotaxis in vitro[J]. Arterioscler Thromb Vasc Biol, 2005, 25(5): 1008-1013. [28] Yan J, Wang WB, Fan YJ, et al. Cyclic stretch induces vascular smooth muscle cells to secrete connective tissue growth factor and promote endothelial progenitor cell differentiation and angiogenesis[J]. Front Cell Dev Biol, 2020, 8: 606989. doi: 10.3389/fcell.2020.606989 [29] Han Y, Yan J, Li ZY, et al. Cyclic stretch promotes vascular homing of endothelial progenitor cells via Acsl1 regulation of mitochondrial fatty acid oxidation[J]. Proc Natl Acad Sci USA, 2023, 120(6): e2219630120. doi: 10.1073/pnas.2219630120 [30] Shi Y, Li DH, Yi BC, et al. Physiological cyclic stretching potentiates the cell-cell junctions in vascular endothelial layer formed on aligned fiber substrate[J]. Biomater Adv, 2024, 157: 213751. doi: 10.1016/j.bioadv.2023.213751 [31] Zhang DS, Cao YR, Liu DX, et al. The etiology and molecular mechanism underlying smooth muscle phenotype switching in intimal hyperplasia of vein graft and the regulatory role of microRNAs[J]. Front Cardiovasc Med, 2022, 9: 935054. doi: 10.3389/fcvm.2022.935054 [32] Nakagawa A, Hayakawa S, Cheng YL, et al. Cyclic stretch regulates immune responses via tank-binding kinase 1 expression in macrophages[J]. FEBS Open Bio, 2023, 13(1): 185-194. [33] Atcha H, Meli VS, Davis CT, et al. Crosstalk between CD11b and Piezo1 mediates macrophage responses to mechanical cues[J]. Front Immunol, 2021, 12: 689397. doi: 10.3389/fimmu.2021.689397 [34] Okada M, Matsumori A, Ono K, et al. Cyclic stretch upregulates production of interleukin-8 and monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 in human endothelial cells[J]. Arterioscler Thromb Vasc Biol, 1998, 18(6): 894-901. [35] Yamamoto H, Teramoto H, Uetani K, et al. Cyclic stretch upregulates interleukin-8 and transforming growth factor-beta1 production through a protein kinase C-dependent pathway in alveolar epithelial cells[J]. Respirology, 2002, 7(2): 103-109. [36] Yang Q, Lei D, Huang SX, et al. A novel biodegradable external stent regulates vein graft remodeling via the Hippo-YAP and mTOR signaling pathways[J]. Biomaterials, 2020, 258: 120254. doi: 10.1016/j.biomaterials.2020.120254 [37] Ding L, Hang C, Cheng SY, et al. A soft, conductive external stent inhibits intimal hyperplasia in vein grafts by electroporation and mechanical restriction[J]. ACS Nano, 2020, 14(12): 16770-16780. [38] Dillavou ED, Lucas JF, Woodside K, et al. VasQ U.S. pivotal study demonstrates the safety and effectiveness of an external vascular support for arteriovenous fistula creation[J]. J Vasc Surg, 2023, 78(5): 1302-1312. [39] Yasuda S, Goda M, Shibuya T, et al. An appropriately sized soft polyester external stent prevents enlargement and neointimal hyperplasia of a saphenous vein graft in a canine model[J]. Artif Organs, 2019, 43(6): 577-583. [40] Shirasu T, Urabe G, Yodsanit N, et al. Nano-based perivascular intervention sustains a nine-month long-term suppression of intimal hyperplasia in vein grafts[J]. Bioact Mater, 2025, 44: 82-96. doi:10.1016/j.bioactmat.2024.10.1005 |
| [1] | GUO Ke, CHEN Xujun, SHI Chao, LUO Junhui, YANG Min, WANG Xiaowu, WANG Zhendong, LI Youjin, MENG Chunying, CHEN Wensheng. Outcomes of a Y-composite arterial graft using free right internal mammary artery and radial artery for patients undergoing total arterialization myocardial revascularization in multi-center in China [J]. Journal of Shandong University (Health Sciences), 2025, 63(9): 84-91. |
| [2] | GUO Ke, CHEN Xujun, ZHENG Baoshi, SHI Chao, HUANG Keli, CAO Yong, CHEN Jun, WU Dongkai, ZHANG Xiaoshen, LUO Junhui, SHEN Lin, MO Xumin, YANG Min, WANG Xiaowu, LEI Yinsheng, TIAN Maozhou, WANG Zhendong, MENG Zili, SUN Zhongdong, LI Youjin, LU Huihui, MENG Chunying, GAO Feng, CHEN Qiansu, GUO Nengrui, LIU Debin, ZHANG Nan, LIN Yu, CHEN Wensheng, SONG Baoguo, FANG Zhi, WANG Haichen, LIAO Xiaobo, XU Chaojun. Multi-center clinical outcomes of fast-track extubation in total arterial coronary bypass grafting in China [J]. Journal of Shandong University (Health Sciences), 2025, 63(5): 26-32. |
| [3] | CHEN Xujun, HE Guowei. Focus on further more use of arterial grafts in coronary artery bypass grafting in patients with coronary heart disease in China [J]. Journal of Shandong University (Health Sciences), 2025, 63(5): 1-5. |
| [4] | WANG Zhiqi, QI Jirong, HU Yuanli, CHEN Xujun, WANG Qingfeng, MO Xuming. Total arterial coronary artery bypass grafting for treatment of coronary artery aneurysm after Kawasaki disease in a child: case report and literature review [J]. Journal of Shandong University (Health Sciences), 2025, 63(5): 47-53. |
| [5] | WEN Xuelong, LIU Anhui, CHEN Jingwei, WU Mengting, YANG Min. A Meta-analysis of the timing of coronary artery bypass grafting surgery for acute non-ST myocardial infarction [J]. Journal of Shandong University (Health Sciences), 2025, 63(5): 60-70. |
| [6] | MO Xuming, WANG Qingfeng. Application of coronary artery bypass grafting in pediatric cardiovascular disease [J]. Journal of Shandong University (Health Sciences), 2025, 63(5): 40-46. |
| [7] | CHEN Xujun, SHEN Lin, CHEN Jun, YU Tao, CAO Guangqing, XIAO Fei. Anatomic complete revascularization is a new strategy of surgical treatment for coronary heart disease [J]. Journal of Shandong University (Health Sciences), 2025, 63(5): 12-17. |
| [8] | XIAO Fei, WANG Lianqun, JI Qiang. Application interpretation of STS multi-vessel coronary artery bypass grafting [J]. Journal of Shandong University (Health Sciences), 2025, 63(5): 6-11. |
| [9] | GUO Ke, CHEN Xujun, ZHENG Baoshi, HUANG Keli, WANG Xiaowu, CHEN Jingwei, LIN Yu, LUO Junhui, WANG Haichen, WANG Zhendong, LIAO Chengquan, LI Youjin, CHEN Wensheng. Multi-center mid-term clinical outcomes in coronary patients undergoing total arterial bypass surgery with anatomic complete revascularization in China [J]. Journal of Shandong University (Health Sciences), 2025, 63(5): 18-25. |
| [10] | LU Shengxun, XING Yachuang, LUO Junhui, LIU Jie, HE Houle, WANG Zhiqiang, ZHANG Na. Diabetic patients arterial grafts in coronary artery bypass grafting: current research status [J]. Journal of Shandong University (Health Sciences), 2025, 63(5): 33-39. |
| [11] | DU Aijia, ZHANG Man, CHEN He, WANG Lixin, SHANG Yingshu. miR-1270-targeted regulation of angiopoietin-like protein 7 inhibits macrophage inflammation and lipid accumulation [J]. Journal of Shandong University (Health Sciences), 2025, 63(2): 1-9. |
| [12] | ZHANG Xiwei, REN Linwei, ZHANG Hui, ZHANG Xinjie, LIU Weiguo, WANG Dong. Early clinical efficacy of left internal thoracic artery plus radial artery in total arterialized coronary artery bypass grafting [J]. Journal of Shandong University (Health Sciences), 2024, 62(3): 39-46. |
| [13] | YAN Congcong, CHEN Chen, XIE Qian, WANG Yanan, ZHANG Xinlu, ZHANG Yingchun, WU Bin. Effects of bisphenol A exposure on m6A modification level of KGN cells [J]. Journal of Shandong University (Health Sciences), 2023, 61(8): 17-23. |
| [14] | YU Ruiming, BING Weidong, LIU Chunxiao, MENG Xiangbin, BI Yanwen. Scraping method improves the extraction of primary endothelial cells from human saphenous vein [J]. Journal of Shandong University (Health Sciences), 2023, 61(2): 43-48. |
| [15] | LIU Yan, ZHANG Man, JIANG Chaoyang, BIAN Shu, DU Aijia, CHEN He. LncRNA-HOTAIR regulates migration of macrophages via H3K27me3 pathway [J]. Journal of Shandong University (Health Sciences), 2022, 60(6): 1-9. |
|
||